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ABSTRACT
A major drawback of current Hidden Markov Model (HMM)-based
speech synthesis is the monotony of the generated speech which is
closely related to the monotony of the generated prosody. Com-
plementary to model-oriented approaches that aim to increase the
prosodic variability by reducing the ”over-smoothing” effect, this
paper presents a linguistic-oriented approach in which high-level lin-
guistic features are extracted from text in order to improve prosody
modeling. A linguistic processing chain based on linguistic prepro-
cessing, morpho-syntactical labeling, and syntactical parsing is used
to extract high-level syntactical features from an input text. Such lin-
guistic features are then introduced into a HMM-based speech syn-
thesis system to model prosodic variations (f0, duration, and spec-
tral variations). Subjective evaluation reveals that the proposed ap-
proach significantly improve speech synthesis compared to a base-
line model, event if such improvement depends on the observed lin-
guistic phenomenon.

Index Terms— HMM-based speech synthesis, Prosody, High-
Level Syntactical Analysis

1. INTRODUCTION

Research on speech synthesis has brought significant improvements
over the past decade that makes possible to generate natural speech
from text [1, 2]. However, if the synthesized speech sounds acous-
tically natural, it is often considered poor according to the way
of speaking (prosodic artifacts and monotony). Now, modeling the
variability in the way of speaking (variations of prosodic parameters)
is required to provide natural expressive speech in many applica-
tions of high-quality speech synthesis such as multi-media (avatar,
video game, story telling) and artistic (cinema, theater, music) ap-
plications. Despite growing attention to prosody modeling over
the past few years, one of the major drawbacks of actual prosody
models remains the monotony of the generated prosodic parameters.
The prosody monotony is both related to poor dynamics (”aver-
aging problem”) and poor variability of the generated prosodic
parameters. Poor variability basically results in the generation of
stereotypical prosody and is mainly due to the lack of linguistic
knowledge extracted from the text .
In order to model the variability of prosodic parameters, it is nec-
essary to determine an appropriate representation of prosodic pa-
rameters and then to extract and estimate the effects of high-level
linguistic features (syntactic, semantic, discursive) on the observed

prosodic parameters. At the signal level many approaches have
been proposed to represent the variations of the prosodic parameters
([1, 3] for fundamental frequency variations and [4, 5, 6] for du-
rations) based on statistical parametric modeling. At the symbolic
level, prosodic variations are affected in many ways by linguistic
constraints (phonologic, syntactic, semantic, discursive,...) occur-
ring on a set of more or less linguistically well-defined units. Strictly
speaking of syntactic-prosodic relationships, syntactic structure does
not affect prosodic structure [7, 8] only, but acoustic variations as
well, as shown in recent studies (for instance: oral parenthesis
[9, 10]). This paper presents an exploratory study that aims to in-
corporate high-level syntactical features extracted from text within
a HMM-based speech synthesis framework in order to improve
prosodic model variability.
The paper is organized as follows: section 2 presents the linguis-
tic processing chain and the syntactical features extracted from text;
section 3 introduces the HMM-based synthesis framework; thus per-
ceptual experiment and results are presented in sections 4 and 5.

2. HIGH-LEVEL SYNTACTICAL ANALYSIS

2.1. Linguistic Processing Chain

At the symbolic level, the input text (sentence, set of sentences or
raw text) is processed by an automatic linguistic parser (Alpage Lin-
guistic Processing Chain 1) in order to extract high-level linguis-
tic features (morpho-syntactical and syntactical) within the sentence
level.
The Alpage Linguistic Processing Chain is a full linguistic process-
ing chain for French based on a sequence of processing modules: a
lexer module, a parse module, and a post-processing module. The
input text is first preprocessed by the lexer module that output Direct
Acyclic Graphs (DAGs) combined with lexical information retrieved
from a morphological and syntactic lexicon. Then deep parsing is
performed by the parser (FRMG), a symbolic parser based on a com-
pact Tree Adjoining Grammar (TAG) for French that is automatically
generated from a meta-grammar. The parsing result is then enriched
by a series of post-processing modules whose role is to organize all
the informations retrieved along those steps.
The output of the parser is a shared derivation forest that represents
all derivation structures that the grammar can build for the input sen-
tence, and indicates which TAG operation (substitution, adjunction,

1http://alpage.inria.fr/alpc.en.html

http://alpage.inria.fr/alpc.en.html


anchoring) took place on a given node of a given tree for a given
chunk. This forest is then transformed into a shared dependency
forest: anchors of trees related to a given node label are put into
a dependency relationship with this label. A dependency forest is
represented into a DEP XML format that incorporates the following
items:

• clusters that are associated to the forms of the sentence;

• nodes that point on a given cluster and associated to a lemma, a
syntactical category and a set of derivations;

• edges that connect a source node with a target node with a given
label. More precisely, a given edge is associated with a set of
derivations related to this edge and the related source and target
chunk operations.

At last the forest is disambiguated by a heuristic-based module that
outputs a unique dependency tree. An example of a disambiguated
dependency graph as provided by the parser is shown in figure 1.

2.2. Syntactical Features Extraction

From the output of the linguistic process described in 2.1, a set of
more or less high-level linguistic features were extracted.

morpho-syntactical form features are extracted from the surface
processing.

• form segment;

• form lexical category and class (function vs. content form);

form dependencies are extracted from the deep parse processing.
This set basically encodes the relationship between forms.

• {governor, current, governee} form lexical category and class;

• edge type and label between current form and {governor, gov-
ernee} form;

• signed dependency distance between current form and {governor,
governee} forms (in forms and in chunks);

recursive chunk are retrieved in a top-down process according to the
operations and associated derivations. As a chunk of a given level
can have several derivations (i.e governee chunks), we chose to stack
governee chunk of a given level from left to right in order to provide
a binary tree chunk representation. For our example sentence (cf.
fig. 1), the transformed recursive chunks are:

(S (AdvP Longtemps ) ( (VP je me suis couché ) (NP de bonne
heure ) ) )

Recursive chunks were finally transformed into non-recursive
chunks by extracting only leaves of the transformed chunk tree (and
encoding only partially recursivity through chunk depth estimation).

• {governor, current, governee} chunk category;

• edge type and label between current chunk and {governor, gov-
ernee} chunks;

• signed dependency distance between current chunk and {governor,
governee} chunks (in forms and in chunks);

• chunk depth;

adjunction represents a specific type of syntactical phenomena. In
particular, adjunctions could concern different text spans (from a sin-
gle form to a full sentence). Adjunction covers a large amount of
syntactical phenomena such as incises, parentheses, subordinate and
coordinate clauses, enumerations, ...

In the FRMG parser formalism, adjunctions can be easily extracted
according to some specific pattern matching (including modified,
introducer, and modifier nodes). Full adjunction is thus extracted
by retrieving the full dependency descendance from the introducer.
Modifier, introducer and modified category as well as edges type
and label are then used to identify adjunction’s type (such as relative
clauses, adjective clauses, adverb clauses, ...).

• {modified, introducer, modifier} form lexical category and class;

• adjunction type retrieved from an adjunction dictionary;

• edge type and label between modified and introducer nodes and
between introducer and modifier nodes;

• signed dependency distance between the adjunction’s introducer
and the modified node (in forms and in chunks);

As adjunctions have recursive property (a given adjunction can be
embedded within another adjunction, or within an adjunction of the
same type), features were extracted separately for each known ad-
junction type (with related pattern). Then, in case of recursivity of
a given adjunction’s type, adjunction with the larger span was ex-
tracted only.

3. INTEGRATION IN THE HMM-BASED SPEECH
SYNTHESIS

Over the last decade, HMM-based speech synthesis system has
grown in popularity [1, 2, 11]. This system models spectrum, exci-
tation, and durations in a unified HMM framework. Compared to
unit-selection systems it offers the ability to model different voices,
speaking styles or emotional speech without requiring the recording
of large databases. The implementation of our HMM-based speech
synthesis system is based on the HTS Toolkit.
During the training, both spectrum and excitation parameters vec-
tors (including f0) and their dynamic vectors are extracted from
the speech corpus and used to train the context-dependent HMMs
according to the alignment. In this way, a mapping is performed
between speech acoustics and linguistic features. Due to the large
amount of context-dependent models, the models are hierarchically
clustered into acoustically similar models using decision trees es-
timated according to Maximum-Likelihood Minimum Description
Length criterion (ML-MDL). Multi-space probability distributions
(MSD) are used to model variable dimensional parameter sequence
such as log f0 with unvoiced regions properly. Each context-
dependent HMM has state duration probability density functions
(PDFs) to capture the temporal structure of speech [4, 5].
During the synthesis, the text to be synthesized is first converted to a
context-dependent label sequence. An utterance HMM is then built
by concatenating the most appropriate context-dependent HMMs ac-
cording to the label sequence and the trained decision trees. State
durations of the utterance HMM are then determined based on the
state duration PDFs. Finally, the speech parameter are generated
using a maximum likelihood algorithm including dynamic features
[13] from which a speech waveform is synthesized using a speech
synthesis filter.
It is important to note that by adopting this HMM framework, all
prosodic dimensions could be estimated according to the linguis-
tic contextual features (i.e. not only f0 variations and duration but
voice quality as well). The following linguistic feature sets were
introduced as contextual features:

• baseline linguistic units: phonem, syllable and prosodic group,
with phonem and syllable phonological features (phonem phono-
logical features, syllabic structure, and prosodic structure: prosodic
frontiers and syllable prominence) [6];
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Fig. 1. Disambiguated dependency graph for the sentence: ”Longtemps, je me suis couché de bonne heure.” (”For a long time I used to go to
bed early”). Squares represent clusters (with associated form), circles represent nodes (with associated lemma and lexical category), arrows
represents edges (with associated dependency label) going from source node (governor) to target node (governee).

• morpho-syntactical linguistic unit: form;

• dependency linguistic unit: form;

• chunk linguistic unit: chunk;

• adjunction linguistic unit: adjunction;

For each feature set, low-level linguistic features were extracted on
each linguistic unit with left-to-right contexts (second order for the
phoneme features, and first order for the other linguistic units with
the exception of adjunction that does not necessarily have direct ad-
jacent context): locational (position of a given unit within higher
level units) and weight (number of observations of a given linguistic
unit within higher level units) features.

4. EXPERIMENT

4.1. Experimental setup

For the purpose of that experiment, two models were compared: a
baseline model including baseline and morpho-syntactical linguistic
features; and a rich linguistic model including all linguistic features.
Such linguistic sets were used to train all speech synthesis parame-
ters (spectral and f0 variations and durations).
Models were trained on a 1 hour (956 sentences) laboratory corpus
spoken by a French non professional male speaker and recorded at
16kHz in an anechoic room.
The following processing chain was applied to the training corpus:
phonemic segmentation using ircamAlign [12]; syllabation on inter-
pausal groups; automatic syllable prominence detection using ircam-
Prom [14]. Linguistic feature were extracted from text with the
Alpage Linguistic Processing Chain. All analysis were conducted
within the ircamCorpusTools [15] framework.
Due to the high complexity of the linguistic structure as well as their
dependencies with speech prosody, estimating precisely the influ-
ence of each of the extracted linguistic features on the synthesized
speech and prosody is unreachable. It is more likely to reduce the
evaluation to a subset of well-defined specific syntactical phenom-
ena. For that reason the evaluation corpus was designed according
to syntactical adjunctions only. This choice is motivated by several
reasons: adjunctions concerns long-term speech scope (oral paren-
thesis) which makes it easier to evaluate variations across differ-
ent models; adjunctions could be described with limited vocabulary

which makes easier to generate a limited sentence corpus which is
needed in a subjective evaluation experiment; adjunctions has been
shown in a previous study to be the most relevant syntactical feature
for prosody modeling [16].
The text corpus used for the evaluation has been designed in the
following maneer: 10 baseline sentences were chosen without any
specific syntactic property (ex: Le chat a mangé la souris, The cat
ate the mouse). These sentences were then enriched according to a
set of adjunction type (subordinate participial and relative clauses,
coordinate clauses, incises and enumerations). For each adjunction
type, original sentences were enriched according to two control pa-
rameters: position (initial, medial, final) and complexity (presence or
not of adjunctions within the current adjunction) of the introduced
adjunction. This finally lead to a 54 sentences evaluation corpus.
For the feasibility of the study, only 20 were selected for the subjec-
tive evaluation. Finally speech parameters were synthesized for each
sentence according to the considered model and contextual features
sequence extracted from text (prosodic structure being inferred from
a common model then equal for both compared models).

4.2. Subjective evaluation

The evaluation consists of a subjective comparison between the 2
models. A comparison category rating (CCR) test was used to com-
pare the quality of the synthetic speech generated by baseline and
rich linguistic models. The evaluation were conducted according to
source-crowding using social networks 2. 50 French native speak-
ers (including 17 experts and 33 naive listeners) compared a total of
20 speech sample pairs. They were asked to attribute a preference
score according to the quality of each of the sample pairs on the
comparison mean opinion score (CMOS) scale. Listening test was
performed with headphones.

5. RESULTS & DISCUSSION

Analysis of variance (ANOVA) has been estimated on the resulting
preference distributions in order to asses perceptive differences be-

2this perceptual evaluation group is available on http://www.
facebook.com/group.php?gid=150354679034&ref=ts
and the test on http://recherche.ircam.fr/equipes/
analyse-synthese/lanchant/index.php/Main/TestSP.

http://www.facebook.com/group.php?gid=150354679034&ref=ts
http://www.facebook.com/group.php?gid=150354679034&ref=ts
http://recherche.ircam.fr/equipes/analyse-synthese/lanchant/index.php/Main/TestSP
http://recherche.ircam.fr/equipes/analyse-synthese/lanchant/index.php/Main/TestSP
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Fig. 2. CMOS preference score for the different adjunction types

tween the two models. An overall comparison shows a slight but sig-
nificant preference for the rich linguistic model (F (1, 1999) = 31,
p − value < 10−5). A closer look to the results (fig.2) reveals
noticeable differences among the different sentence sets. There is
a slight but significant difference (F (1, 499) = 8.4, p − value =
4.10−3) for the baseline sentences. This is actually in agreement
to what could be expected since such sentences were defined with-
out any particular syntactical property. Scores obtained for the en-
riched sentences reveals the strongest preference to the rich linguis-
tic model, this result is not observed for all types of adjunction. If
there is a clear preference to the rich linguistic model for the last
three adjunction types (coordinate: F (1, 299) = 50, p − value <
10−5; incise: F (1, 399) = 38, p − value < 10−5; enumeration:
F (1, 99) = 78.4, p − value < 10−5), there is however a prefer-
ence to the baseline model in case of subordinate sentences (clear
preference in case of participial subordinate: F (1, 399) = 17.58,
p − value < 10−5 and no preference in the case of relative subor-
dinate (F (1, 299) = 1.5 with p− value = 0.2).
The prosodic improvements of the synthesized speech can be listed
as follows:

• accentuation: more prosodic variations observed on the accented
syllables; accent form modification (conclusive, continuative ac-
cent);

• prosodic phrasing: local improvement of the prosodic phrasing
(pitch variations and local speech rate).

These are encouraging preliminary results even if such improve-
ments are not systematic: this is probably due to sparse observations
(number of occurrences for each extracted syntactical phenomenon)
for which parameters of the model could not be robustly estimated.
Further experiments with more training observations will be carry
out.

6. CONCLUSION & FURTHER WORK

We have presented a speech synthesis system using high-level lin-
guistic features in order to improve prosody modeling. Perceptual
evaluation shows that the proposed approach improve speech synthe-
sis compared to the state-of-the-art approach. However this improve-
ment still depends on the observed linguistic phenomenon which is
probably due to sparse observations. In further work such approach
will be evaluated with more linguistic observations and according
to the linguistic complexity of an observed corpus. A joint model

approach will be used in order to improve the estimation of the de-
pendencies between high-level linguistic features and prosodic vari-
ations by jointly modeling prosodic variations over different time
scales. Furthermore, one needs to define evaluation measurement
that could more precisely account for prosodic variability.
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