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Abstract

This paper presents a study on the use of deep syntactical fea-
tures to improve prosody modeling A French linguistic
processing chain based on linguistic preprocessing, morpho-
syntactical labeling, and deep syntactical parsing is used in or-
der to extract syntactical features from an input text. These
features are used to define more or less high-level syntactical
feature sets. Such feature sets are compared on the basis of a
HMM-based prosodic structure model. High-level syntactical
features are shown to significantly improve the performance of
the model (up to 21% error reduction combined with 19% BIC
reduction).

Index Terms: Prosody, Prosodic Structure, Speech Synthesis,
High-Level Syntactical Analysis.

1. Introduction

Research on speech synthesis has lead to significant improve-
ments over the past decade that make possible to generate natu-
ral speech from text. However, if the synthesized speech sounds
acoustically natural, it is often considered poor according to the
speaking style (prosodic artifacts and monotony). Now, model-
ing the variability in the speaking style (variations of prosodic
parameters) is required to provide natural expressive speech
in many applications of high-quality speech synthesis such as
multi-media (avatar, video game, story telling) and artistic (cin-
ema, theater, music) applications.
In parallel, linguistic studies have investigated phonological
models widely in order to formally represent abstract prosodic
objects and structure as well as the prosodic / syntactic inter-
face. Phonological models (ToBI for English [1], Prosogram,
IntSint, IVTS for French [2, 3| 4]]) and expert prosodic predic-
tive models have been proposed ([5} |6} [7] for French). Some
attempts have been proposed in order to implement these infor-
mations into the automatic speech recognition and synthesis do-
mains: explicit hierarchical prosodic structure modeling for au-
tomatic prosodic boundaries detection [8}9]; prosodic structure
predictive models [[10} [11]]; prosodic structure predictive mod-
els from surface syntactic parsing [[12| [13]). Recently, robust
automatic deep syntactical parsers ([14] for French) have been
developed which permit an accurate modeling of the prosodic
/ syntactic dependencies in a generative framework ([15] for
acoustic modeling).

This paper presents a study that aims to model prosodic /
syntactic dependencies. It is organized as follows: section [2]
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presents the linguistic processing chain and the syntactical fea-
tures extracted from text; section [3| presents the HMM-based
model; finally evaluation and results are presented and dis-
cussed in sectionsdand 3

2. High-Level Syntactical Analysis
2.1. Linguistic Processing Chain

An input text (sentence, set of sentences or raw text) is pro-
cessed by an automatic linguistic parser in order to extract high-
level linguistic features (surface and deep syntactical parsing) at
the sentence level.
The Alpage Linguistic Processing Chain E] is a full linguistic
processing chain for French which is organized as a sequence
of processing modules: a lexer module (Lefff: a French Mor-
phological and Syntactic Lexicon [[16]; SXPipe: a full linguistic
preprocessing chain for French [17]]), a parse module (DyALog:
a parser compiler and logic programming environment [18]];
FRMG: a FRench Meta Grammar [14]), and a post-processing
module.
Deep parsing is performed by the FRMG parser, a symbolic
parser based on a compact Tree Adjoining Grammar (TAG) for
French that is automatically generated from a meta-grammar.
The parsing result is then enriched by a series of post-processing
modules whose role is to organize all of the information re-
trieved along the whole linguistic processing.
The output of FRMG is a shared derivation forest that represents
all derivation structures that the grammar can build for the input
sentence, and indicates which TAG operation (substitution, ad-
junction, anchoring) took place on a given node of a given tree
for a given chunk. This forest is then transformed into a shared
dependency forest: anchors of trees related to a given node la-
bel are put into a dependency relationship with this label. Node
labels are generally associated with their grammatical or syn-
tactical function.

A dependency forest is represented into a DEP XML format
that incorporates the following items:

e clusters that are associated with the forms of the sentence;

e nodes that point to a given cluster and are associated to a
lemma, a syntactical category and a set of derivations;

o edges that connect a source node with a target node are as-
signed an appropriate label. More precisely, a given edge is
associated with a set of derivations related to this edge and
the related source and target chunk operations.

At last the forest is disambiguated by an heuristic-based
module that outputs a single dependency tree. In cases where
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http://alpage.inria.fr/alpc.en.html

complete parsing could not be achieved, the parser switches
from full to partial parsing. This is achieved by a post pars-
ing over partial parses to retrieve the best sets of partial parses
covering the input. An example of an output disambiguated de-
pendency graph is shown in figure[2}

2.2. Syntactical Feature Extraction

From the output of the linguistic process described in[2.1] a set
of more or less high-level linguistic features is extracted to be
used for prosody modeling. The first set of features is related to
surface processing while the others are extracted from the deep
parsing step.

morpho-syntactical: morphological and syntactical form fea-
tures such as extracted from the surface processing.

e form segment;

e form lexical category and class (function vs. content form);
form dependency: form dependencies such as extracted in the
deep parsing. This set basically encodes the relationship be-
tween forms.

e {governor, current, governee} form lexical category and
class;

e edge type and label between current form and {governor,
governee} form;

e signed dependency distance between current form and
{governor, governee} forms (in forms and in chunks);

recursive chunk: recursive chunks are retrieved in a top-down
process according to the operations and associated derivations.
For our example sentence (cf. fig. [2), complete recursive
chunks are:

(S (AdvP Longtemps ) ( (VP je me suis couché ) (NP de bonne heure ) ) )

Recursive chunks are finally transformed into non-recursive

chunks by extracting only the leaves of the transformed chunk

tree.

The following features are then extracted:

e {governor, current, governee} chunk category;

e edge type and label between current chunk and {governor,
governee} chunks;

e signed dependency distance between current chunk and
{governor, governee} chunks (in forms and in chunks);

o chunk depth;

adjunction: as presented in section adjunctions represent

a specific type of syntactical phenomena. In particular, adjunc-

tions can relate to different text spans (from a single form to a

full sentence). Interestingly, adjunction covers a large amount

of syntactical phenomena (such as incises, parentheses, subor-

dinate and coordinate clauses, enumerations, ...).

In the FRMG parser formalism, adjunctions can be easily
extracted according to specific pattern matching (Fig. [T). Full
adjunction is then extracted by retrieving the full depedency de-
scendence from the introducer.

These features are used to extract:

e {governor, introducer, governee } form category;

o edge type and label between modified and introducer nodes
and between introducer and modifier nodes;

o signed dependency distance between the adjunction’s intro-
ducer and the modified node (in forms and in chunks);

In the case of recursivity, where a given adjunction can be em-

bedded within another adjunction, only the adjunction with the

larger span iss extracted.

Syntactical features extracted from text are then used in a

prosodic context-dependent model.

edge type edge type
adjunction substitution

Figure 1: Generic adjunction pattern. In this figure, M is the
governor node, N the governee node, I the introducer.

3. Prosodic Structure Model

The proposed prosodic structure model is a context-dependent
HMM model based on the approach decribed in [10] using a se-
quential prosodic structure grammar as proposed in [19]. This
grammar is based on a hierarchical prosodic description of the
concept of prosodic packaging and prosodic prominence. The
prosodic grammar is composed of: major frontier (FM, frontier
of a prosodic group), minor frontier (Fm, frontier of an accen-
tual group) and prosodic prominence (P, lexical prominence).
This grammar is finally transformed into a sequential grammar
in order to fullfill the HMM framework.

3.1. Prosodic Structure Model Training

During the training procedure, contextual features are first clus-
tered according to a classification tree estimated according to
the minimum entropy criterion [20]. The classification tree is
grown using a stop criterion set to 50 observations for a node
and then pruned back according to a separate development set.
Thus HMM-models A = {p(qo), p(0|q), p(gn-1lqn)} (respec-
tively initial probability, observation probability, and transition
probabilities) are estimated for each terminal node of the result-
ing contextual tree.

3.2. Prosodic Structure Model Prediction

Such models are then used in a HMM inference framework. Let
© = [fo,...,0N_1] be a sequence of contextual observations
and q = [qo, ..., gn—1] the hidden prosodic structure sequence.

Thus,
H (0nlgn, X)

2

p(q|®, A) o< P(q0)P(bo|qo, A) P(qn|qn—1)

The optimal sequence is estimated according to the maximum
likelihood criterion using the Viterbi algorithm.

q = argmax(p(q|®, \))
q

Such a parametric approach appears particularly suitable for
prosodic structure modeling since it is possible to estimate
speaker-dependent prosodic structure models and thus to model
prosodic specific strategies of a given speaker or speaking style
(exemple[T] cf. supra).

((tues bien inhumaing,,, ) ( d’avoir perdu ainsi tes enfants p,,, ) rp ;)

((tues bienp inhumaing,, )r,,) ((d’avoir perdu ainsig,, ) ( tes enfants g, )F, )

Table 1: Prosodic strategies as infered by speaker-dependent
models for the utterance: “Tu es bien inhumain d’avoir perdu
ainsi tes enfants !” (A monster you must be to lose your children
in this way!). Litlle Tom Thumb, Charles Perrault.

4. Experiment
4.1. Speech & Text Material

In this study we compared the performance of the proposed
prosodic structure model on two very distinct French read-
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Figure 2: Disambiguated dependency graph for the sentence: ”Longtemps, je me suis couché de bonne heure.
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used to go to bed early”). Squares represent clusters (with associated form), circles represent nodes (with associated lemma and lexical
category), arrows represents edges (with associated dependency label) going from source node (governor) to target node (governee).

speech corpora: a laboratory corpus with simple linguis-
tic structure and controlled speech (spoken isolate utterances
recorded in an anechoic room) and a multi-media corpus E] in-
terpreted by a professional actor. Corpora properties are sum-
marized in table 2

corpus speaker | speech speaker corpus linguistic prosodic
gender type expertise size complexity complexity
laboratory male read naive %h
multi-media male read actor Sh + +

Table 2: Description of the speech corpora.

From the comparison of both corpora, it can be clearly ex-
pected that the model will drop in performance for the multi-
media corpus.

This is due to 1) high linguistic and prosodic complexity: lin-
guistic properties cannot be controlled and professional ac-
tors provide a wider variety of prosodic strategies than non-
professional (less stereotypical thus less predictable) ; 2) au-
tomatic linguistic feature extraction is less robust with highly
complex linguistic structures (for instance, complete parsing
was achieved for 80% and 52% of the sentences of the labo-
ratory and the multi-media corpus respectively)

Nevertheless this type of corpus presents the advantage of pro-
viding rich and various syntactical structures as well as rich
prosodic strategies. Such an approach is also justified by the
fact that the prosodic model should be robust for any real data
as it is required in many multi-media applications.

4.2. Corpus Preprocessing

The following preprocessing chain was applied to the input cor-
pus: phonemic segmentation using ircamAlign [21]; syllabifi-
cation on inter-pausal groups; automatic prosodic frontiers de-
tection with Analor [19]; automatic syllable-based prominence
detection with ircamProm [22].

4.3. Prosodic Structure Model’s Parameters

Different sets of linguistic features distributed on a more or less
high-level feature scale were defined:

e morpho-syntactical (linguistic units: form + syllable-based
baseline features: syllabic phonological features (phonemic
content and syllabic structure));

e dependency (linguistic unit: form);

3audio-book: "Du cété de Chez Swann”, first volume of "A la
Recherche du Temps Perdu” from french writer Marcel Proust

e chunk (linguistic unit: chunk);
e adjunction (linguistic unit: adjunction);

For each feature set, low-level linguistic features were com-
puted on each linguistic unit with a first-order left-to-right con-
text: locational and weight features (position and number of a
given unit within higher level units).

4.4. Evaluation scheme

We compared syllable-based sequential models trained with the
different linguistic feature sets, each feature set being added to
the previous ones in the training process accordingly to the pro-
posed scale. Models were evaluated within a 10-folder cross
validation framework. Two measures were used to evaluate
models’ performance:
Bayesian Information Criterion [23)]: a normalized likelihood
measure that is used in particular for model selection. Models
BIC were estimated on the training set;
Weighted Cohen’s Kappa [24)]: provides a paired agreement
measure in the case of ordinal categorical rating, where cate-
gorical labels are ordered along a continuous scale. Kappa mea-
sures provide statistical agreement measures which account for
that expected by chance. In particular, weighted Cohen’s Kappa
enalizes errors according to the nature of the disagreed labels
Linear Cohen’s Kappa was used in this experiment on the
evaluation set.

5. Results & Discussion

Figure 3fa & b) presents the mean performance measures
obtained for the laboratory and multi-media corpora.

In both cases, performance increases as higher-level feature
sets are added. This improvement is particularly significant for
the chunk and adjunction feature sets (for the adjuction feature
set: 21% and 11% of Kappa reduction; 19% and 7.5% of BIC
reduction were observed on the laboratory and multi-media
corpora respectively when compared to the initial feature
set). Conversely, there is no significant difference between
the form-based feature sets (morpho-syntactical and form
dependencies). These results suggest that prosodic structure is
more closely related to large syntactical units rather than form
unit only.

When comparing the performance obtained for each corpus,
there is a clear drop in performance for the multi-media corpus.

“for instance: a confusion on the presence of a frontier (FM or Fm
vs. P or NP) is more important that a confusion on the precise type of a
frontier (FM vs. Fm)
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Figure 3: (a) Overall Linear Cohen’s Kappa according to the different feature sets. (b) Bayesian Information Criteria value according
to the different feature sets. (c) Cohen’s Kappa for each prosodic label according to the different feature sets.

This confirms the expected tendency as discussed in section[4.1]
Secondly, if the performance tendency related to the feature sets
is still observed, this improvement is much lower than it is for
the laboratory corpus. These results should be related to the fact
that 1) the actor provides more varied and complex prosodic
strategies; 2) the automatic feature extraction is less robust thus
less reliable on complex syntactical structures.

Investigating the performance in finer detail reveals that the

performance is clearly dependent on the prosodic label (fig. ]
c).
Frontier prediction presents substantial (FM) and moderate
(Fm) performance while lexical prominence (P) prediction,
only fair performance. This is consistent with performances
found in the litterature for other prosodic structure systems.
Secondly, the performance gain does not uniformly affect the
different prosodic labels. This improvement is clearly signif-
icant for the prosodic frontiers prediction, especially for the
major frontiers, when there is no improvement for the lexcial
prominence prediction. Such results confirm a significant rela-
tionship between prosodic packaging and syntactical structures
and a poor relationship between lexical prominence and syntac-
tical structures. Since lexical prominence encodes lexical phe-
nomena which are strongly related to semantic and discursive
linguistic levels, this hardly appears predictable from a syntac-
tical description only. Higher-level linguistic features are thus
needed to accurately model the location of such prominences.

6. Conclusion

We have presented a prosodic structure model based on the au-
tomatic extraction of rich linguistic context. High-level syn-
tactical features have been shown to significantly improve the
performance of the prosodic model. In particular, syntactical
features such as chunk and adjunction features reveal a sub-
stantial relationship with the prosodic structure. This confirms
existing evidence for linguistic study carried on the syntactic-
prosodic interface. However, syntactical features failed to ac-
curately model lexical prominence. Further research will focus
on the typology of the model: on one hand, by estimating the
prosodic structure model’s parameters in a unified HMM frame-
work and on the other by explicitely modeling the hierarchical
nature of the prosodic structure. This will be done within a hi-
erarchical HMM or more generally within a WTA (Weighted
Tree Automata) framework. Finally, other linguistic levels, for
example semantic, will be introduced in order to improve lexi-
cal prominence modeling.
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