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Abstract
The expansion of the video games industry raises innova-

tive and challenging issues for speech technologies, e.g. the de-
velopment of automatic content-based speech processing and
speech recognition systems in the context of video games post-
production and voice casting. This paper presents a large-scale
study on the classification of vocal effort in expressive speech
for video games. Changes in vocal effort conduct to substan-
tial modifications in the configuration of voice production me-
chanisms. In particular, registers of vocal effort affect espe-
cially voice quality which reflects qualitative modifications of
the source excitation characteristics. This study introduces ro-
bust source characteristics to measure various types of voice
quality (e.g., breathy, creaky, tense) for the classification of vo-
cal effort into whispered, normal, and shouted speech. The sys-
tem is evaluated in the real scenario of video games production
with the complete speech recordings of a massive role-playing
video game. The proposed features significantly improve the
classification from 81.1% to 87% over conventional MFCCs.
These advancements confirm the role of the source and voice
quality for the description of changes in vocal effort.
Index Terms : speech recognition, vocal effort, voice quality,
glottal source, GMM-UBM/SVM.

1. Introduction
Vocal effort corresponds to the adjustment of vocal inten-

sity of a speaker depending on the communication distance to
the listener. Vocal effort may also vary with respect to various
causes (e.g., degree of intimacy that relates speaker and listener,
emotional state of the speaker). A change in vocal effort causes
a change in vocal intensity which conduct to substantial modi-
fications in the configuration of voice production mechanisms.
Studies on vocal effort usually assumes 5 configurations of
voice production : whispered, soft, normal, loud, and shouted
speech 1.

A large number of studies has been dedicated to the description
of the mechanisms involved in the production of whisper
[1, 2, 3], and shouted [4] speech, and the differences in
configuration between soft, normal, and loud speech [5]. True
whisper (low-effort whisper) refers to the excitation of the vocal
tract with half-closed vocal folds. Stage whisper (high-effort
whisper) is the simulation of whisper speech by professional
actors so the speech is sufficiently loud so that the speech
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1. Lombard and stressed speech may also be additional configura-
tions.

is audible by the audience. Stage whisper differs from true
whisper with extremely breathy and partially voiced speech
[2]. Shouted speech corresponds to a raise in F0 due to the raise
of subglottal pressure used to increase vocal intensity [6], and
non-linearities due to the non-linear interaction of air flow and
air vortices near the vocal folds producing additional excitation
signals. A raise in vocal effort also affects the characteristics
of the vocal tract, from the muscle tension in the vocal tract
to the modification of vocal tract resonances. Finally, these
modifications can be retrieved from signal analysis and the
observation of F0 and spectral characteristics of speech [7]
(e.g., spectral slope as an approximation to the glottal source
structure).
The identification of vocal effort drastically affects the
performance of speech recognition systems, from speech
segmentation to speaker identification [8, 9, 10]. Vocal effort
identification systems has been proposed to adapt speech recog-
nition systems to specific vocal efforts [11, 12, 13, 14, 8, 10].
In the context of video games production, the classification of
vocal effort configuration is critical for audio post-production
(e.g., application of specific settings for speech level and
multi-band compression depending on the vocal effort in
order to simulate the proximity of speaker and listener), and
may also helps for automatic voice casting. Additionally, the
context of video games raises challenging issues compared
to the requirements of conventional vocal effort identification
systems, from the large database (' 20.000 to 40.000 audio
files and ' 500 roles), the large range of speech variability of
professional actors, including unnatural speech (e.g., cartoons,
robots, extraterrestrials) ; the large difference in audio recor-
dings duration from a single filler (e.g., inspirations, screams,
≤ 0.5s.) to complete utterances (' 10s.).
This study presents a GMM-UBM/SVM system [15] and inves-
tigates robust source excitation characteristics to measure va-
rious types of voice quality [16] for the classification of vo-
cal effort into whispered/soft, normal, and loud/shouted speech.
In particular, this study will exploit recent advances in the ro-
bust separation of glottal source and vocal-tract filter [17, 18]
for speech recognition systems. The proposed source charac-
teristics are : soft voiced/unvoiced description (VUV) in Mel-
frequency bands as a measure of breathiness ; the glottis re-
laxation coefficient (RD) as a measure of tension in the voice ;
and the irregularity of the glottal pulse (∆GCI) as a measure
of creakiness/breathiness. The proposed source characteristics
are compared with conventional features - MFCCs and Teager
Energy Operator (TEO) [11, 12] - within a large-scale evalua-
tion in the real scenario of video games production conducted
on the complete speech recordings of a massive role-playing vi-
deo game.



2. Speech Database
Speech recordings of a video game consist in the interpre-

tation of script lines by professional actors who are directed
by an artistic head whose role is to control the expressive
content of speech depending on the place of the script within
the overall scenario. Script lines may vary from a single sigh
to a complete sentence. In role-playing games, the recording
covers ten-thousands of speech files that are split into hundreds
of roles. The video game used for the study includes around
20.000 French speech recordings and 500 roles (from a single
to hundreds of recordings). The duration of speech recordings
varies from 0.1 seconds to 20 seconds with a mean duration of
2.5 seconds. Recordings were made in mono 48 kHz/16 bits
uncompressed format.

Speech recordings are produced in a studio by professional
actors with a varying distance and orientation to the micro-
phone so as to compensate the variations in acoustics due
to changes in intended vocal effort (close while whispering,
distant while shouting). Additionally, a sound engineer ensures
that the speech level is constant through speech recordings so
as to provide a homogeneous speech level through the video
game. Finally, the situation of professional studio recording
of speech for video games exhibits no significant differences
of speech level for changes in vocal effort by professional
actors (contrary to laboratory recordings [12]). Hence, only
information provided by changes in the source excitation or
the vocal tract resonances can be used for the identification of
changes in vocal effort.

The identification of significant changes in vocal effort is criti-
cal in the production of video games for the application of speci-
fic settings that simulate the perception of proximity to the spea-
ker by the player. For this purpose, the sound engineer is usually
in charge for the manual classification of expressive speech re-
cordings into three classes which cover whispered/soft, normal,
and loud/shouted speech. In the present study, whispered/soft
speech covers sighs, true whisper, stage whisper, stressed whis-
per (tense whisper typically produced in a life-survival situa-
tion in which the conversation intimacy is absolutely required),
soft speech, and any situation of intimacy in the speech com-
munication. Loud/shouted speech includes orders, public an-
nouncements, exclamations, interjections, stressed-speech, and
screams.

3. Source Characteristics
The objective of this study is to investigate robust speech

characteristics which may provide complementary information
to the conventional MFCCs. Robust characteristics denote cha-
racteristics that are not subject to errors which may be critical
for the classification. For instance, F0 and VOICED/UNVOICED
FREQUENCY (VUF) were not retained for the comparison
due to their sensibility in the context of expressive speech -
especially, for the analysis of whispered and shouted speech.

Instead, robust source characteristics are introduced that may
relate to various types of voice quality (breathiness, creakiness,
tense, stress). For instance, a measure for the description of noi-
siness in the speech is introduced as a robust reformulation of
the VUF into a soft VOICED/UNVOICED DECISION (VUV) wi-
thin Mel-frequency bands. Additionally, this study will exploit
recent advances in the robust separation of glottal source and

vocal-tract filter [17, 18] which have been proved to be robust
for the analysis of expressive speech. In particular, the glottal-
source and vocal-tract separation provides an explicit descrip-
tion of the glottal source characteristics contrary to methods
which does not process this separation (e.g., spectral slope).
The glottal source characteristics considered are : the glottis re-
laxation coefficient (RD) as a measure of tension in the voice ;
and the irregularity of the glottal pulse (∆GCI) as a measure
of creakiness. Finally, TEAGER ENERGY OPERATOR (TEO)
based characteristics are also used for comparison which were
proved to be extremely relevant for the identification of loud
and stressed speech [12].

3.1. MFCC

13 Mel-Frequency Cepstral Coefficients (MFCC) are ex-
tracted after the non-linear compression of amplitude spectrum
into 25 Mel-frequency bands. Short-term features were extrac-
ted with a 25 ms. hanning moving window of 5ms.

3.2. TEO

The Teager Energy Operator has been introduced as a mea-
sure to reflect the non-linear airflow structure of speech pro-
duction that can be observed in emotional and stressed speech
[11, 12]. The non-linearities introduced in the source excita-
tion causes the apparition of additional partials and modula-
tions in the spectrum which do not correspond to the usual li-
near source/filter model. The TEO profile is a constant in the
presence of a single and stationary sinusoid. This property can
be extended so as to measure separately the degree of non-
linearities within various frequency bands. Further investiga-
tions conduct to the introduction of the normalized TEO au-
tocorrelation envelope area which intends to reflect the distri-
bution, the degree of stationarity, and the interactions of partials
that are present within a frequency region. The normalized TEO
autocorrelation envelope area has been proved to be extremely
consistent for the identification of loud and stressed speech [12].
In the present study, the normalized TEO autocorrelation enve-
lope area was extracted after band-pass filtering of the speech
signal into 25 Mel-frequency bands.

3.3. V/UV

The frequency distribution of harmonic content is assumed
to change significantly with raise in vocal effort and reflect the
degree of vibration of the vocal folds, the vocal intensity, and
the raise of F0. In particular, a raise in vocal effort may coincide
with a raise in the harmonic distribution through high-frequency
bands. In this study, a soft Voiced/Unvoiced decision (VUV)
[19] is introduced as a measure of the harmonic distribution into
25 Mel-frequency bands. For each frequency band, the VUV is
measured as :

V UV (i) =

PK(i)

k=1 |AH(k)|2PN(i)

n=1 |A(n)|2
(1)

where : i denotes the i-th Mel frequency band, AH(k) the
amplitude of the k-th harmonic [20], and A(n) the amplitude
of the n-th frequency bin in the considered frequency band.
Hence, VUV is equal to zero when no harmonic content is
present in the frequency band, and to one when only harmonic
content is present in the frequency band.

Figure 1 presents the distribution of the VUV for whispe-
red/soft, normal, and loud/shouted speech. This clearly shows
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FIGURE 1 – Distribution of the Mel-frequency V/UV for whispered, normal, and shouted speech - from left to right. Black arrows
indicate the Mel-frequency band upon which no voiced frequency content is observed (e.g., fW = 9, fN = 14, and fS = 18 for
V/UV ≤ 0.2)

that the raise of vocal effort conduct to a significant raise of
the harmonic content through high frequency bands. For ins-
tance, the frequency region upon which no significant harmonic
content is present raises from the 9-th frequency band for whis-
pered/Soft speech to the 18-th frequency band for loud/shouted
speech.

3.4. Voice Quality

Glottal source characteristics are extracted from the robust
separation of glottal source and vocal-tract filter [17, 18]. In
particular, the glottal shape (LF-RD [21]) and Glottal Closure
Instants (GCI) are determined separately. In this representa-
tion, the Liljencrants-Fant (LF) glottal model is described by
a single parameter referred as the glottal relaxation coefficient
(RD) [18]. Then, the estimated Rds are used to determine the
position of the GCIs [17]. Then, the regularity of the GCIs is
determined as :

∆GCI(n) = |∆2 log(GCI(n)−GCI(n− 1))| (2)

where : ∆2(.) denotes the second derivative operator, and
GCI(n) the n-th GCI time position.

These characteristics are referred in this study as voice quality
characteristics (VQ) since there are explicit determination of
the glottal source characteristics which relate to qualitative
voice qualities : RD provides a description of the degree of
tension in the voice, and the regularity of the GCIS provides
a description of the degree of creakiness and/or breathiness in
the voice.

Figure 2 presents the distribution of the VQ characteristics (RD,
∆ GCI) for whispered/soft, normal, and loud/shouted speech.
This clearly shows that the raise of vocal effort conduct to a
significant differences in the configuration of the glottal source
characteristics. In particular, a raise in vocal effort corresponds
to a raise in tension of the vocal tract. Moreover, whispered/soft
speech exhibits a large dispersion in the glottal pulse regularity
which clearly reflects the presence of whispery/breathy/creaky
speech. Also, normal speech exhibits a larger dispersion in the
glottal pulse regularity than loud/shouted speech which may be
due to the presence of intrinsically breathy/creaky speakers in
normal speech.

4. Evaluation
The relevance of the proposed speech characteristics for

the classification of vocal effort into whispered/soft, normal,
and loud/shouted speech has been conducted within a 5-fold

cross-validation. Additional constraints on the design of the
cross-validation have been adopted : well-balanced distribution
of the vocal effort classes within the train and test sets ; no role
overlapping across train and test sets in order to prevent the
system to turn into a speaker identification system.

The classification system is based on the GMM-UBM/SVM
system [15] which is a standard for speech recognition [22, 23].
A UNIVERSAL BACKGROUND MODEL (GMM-UBM) is used
to model the acoustic variability in the speech database with
a Gaussian Mixture Model (GMM). Then, each utterance is
represented as a SUPERVECTOR by MAP adaptation of the
GMM-UBM mean vectors [22]. Then, SUPERVECTORS are
used to determine the parameters of a SUPPORT VECTOR
MACHINE classifier which maximize the margin of a high-
dimensional separation hyperplane for the classification [23].

During the training, each feature set is considered as a separate
stream for the determination of the GMM-UBM and the SVM
parameters. 64 GMMs with diagonal covariance matrices have
been used to determine the parameters of the GMM-UBM,
and a SVM with a GMM-supervector Radial Basis Function
(RBF) kernel has been determined with various values of the
radial bandwidth (from 0.1 to 5). During the classification, the
decision is made by fusioning the affinity obtained for each
stream using average decision fusion. The performance of the
system has been measured with the F-measure metric. Finally,
the performance of the system corresponds to the optimal
performance obtained for each feature set.

Table 1 summarizes the system performance obtained for
conventional MFCC, combination of introduced feature sets
with MFCC, and the optimal combination of feature sets for
the classification of vocal effort.

MASS EFFECT WHISPERED NORMAL SHOUTED TOTAL
MFCC 69.4 82.5 91.0 81.1
MFCC + TEO 72.5 83.6 91.6 82.5
MFCC + VUV 75.0 84.3 91.2 83.5
MFCC + VQ 76.9 84.7 92.0 84.7

...
...

...
...

...
MFCC + TEO
+ VUV + VQ

79.1 88.4 93.5 87.0

TABLE 1 – F-measure obtained for the conventional MFCC, combina-
tion of proposed features with MFCC, and optimal configuration for the
MASS EFFECT role-playing video game.
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FIGURE 2 – Distribution of the voice quality characteristics (∆ GCI, Rd) for whispered, normal, and shouted speech - from left to right.

The evaluation exhibits that the proposed source characteristics
carry complementary information for the classification of vocal
effort. The VQ characteristics are proved to be extremely rele-
vant for the classification of vocal effort (from 81.1% to 84.7%),
especially for the classification of whispered/soft speech (from
69.4% to 76.9%). Also, the proposed VUV and VQ charac-
teristics significantly outperform the conventional MFCC and
TEO characteristics. Finally, the optimal performance is ob-
tained with the complete combination of investigated features
(87.0%), which indicates that each feature set carry complemen-
tary information for the classification of vocal effort.

5. Conclusion
In this paper, a large-scale study on the classification of vo-

cal effort in expressive speech was presented. This study intro-
duced robust source characteristics to measure various types of
voice quality (e.g., breathy, creaky, tense) for the classification
of vocal effort into whispered/soft, normal, and loud/shouted
speech. The system is evaluated in the real scenario of video
games production with the complete speech recordings of a
massive role-playing video game. The proposed features si-
gnificantly improve the classification from 81.1% to 87% over
conventional MFCCs. These advancements confirm the role of
the source excitation and voice quality for the description of
changes in vocal effort. In further studies, the robustness of vo-
cal effort classification will be assessed with cross video games
and cross languages evaluations.
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