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Abstract
Attack transients or simply attacks, are zones of short
duration and fast variation of the sound signal short-time
spectrum such as at the attack of percussion instruments.
There are many motivations for attack detection and
modeling; improving general analysis techniques is one of
them. A method and a program have been developed for
detection, modeling and reconstruction of attacks. It is
based on the detection of energy peaks appearing
simultaneously in several frequency bands of a time-
frequency representation. This program has been tuned and
tested on a data base of percussive sounds and mixtures.

1. Introduction
The term attack transient, or simply attack does not have a
precise definition. It corresponds to the beginning of notes
produced by an instrument. Fast attacks are zones of short
duration (a few ms) and fast variation of the signal short-
time spectrum with an abrupt increase in energy particularly
noticeable in high frequencies since energy is usually
concentrated in the low ones. There are many motivations
for attack detection and modeling. One for instance is the
improvement of general analysis methods. For instance,
classical sinusoidal additive analysis-synthesis [Se89] based
on peaks in the Short Time Fourier Transform usually does
not preserve the sharpness of attacks. This is due to the use
of a finite length window in the spectral estimation.
Moreover, a pre-echo may appear right before the attack of
the synthetic sound: when a window extends over an attack,
sinusoids are detected at a time where they are not yet
present in the signal. This can be partly alleviated by some
more refined techniques such as reallocation [Fitz00]. But
detection of attacks can still improve general analysis
methods. For example it may allow a precise positioning of
analysis windows with respect to attacks or avoid them to
overlap on attacks. In other musical applications, detected
and modeled attacks can be used for further musical

processing. Attack times can, for instance, trigger a
synthesis algorithm so that the percussive rhythm found in a
recording is used in a new musical phrase.

2. Review of detection methods
[Se89] proposes to preserve separately the original attacks
and to substitute them for the corresponding parts in the
resynthesized sound. [Mas96] present three detection
methods but no model. [Lev98] detects the abrupt variation
of the energy of the signal. These two authors also propose
the use of wavelets for detection. In [Kro87] only the
principle of wavelets based detection is described. This has
been implemented by [Daud99] but no numeric evaluation
is given. [Gri99] proposes High Resolution Matching
Pursuit adapted to attack detection and representation.
However computational load is high. No modeling of the
attacks is usually proposed but in [Tho00] (detection by use
of the Prony method) and in [Ver97] (sinusoidal modeling
applied to the Cosine Transform).

3. Detection of attacks based on a time-
frequency representation
The attack detection and modeling method developed in this

research is also based on the following requirements:
•  It should not use additive analysis results, in order to be

usable for other purposes (segmentation, instrument
recognition, etc.).

•  It should succeed in every type of sound (particularly

polyphonic sounds) and with good time accuracy.
•  It should be simple to use: analysis parameters should

as much as possible be adjusted automatically.
•  It should be tested on a data base of sounds including

polyphonic mixtures of percussive and non-percussive
sounds.

A good way to design such an algorithm is to start with
some time-frequency or time-scale representation. In this



research, the Short-Time Fourier Transform (STFT) has
been chosen, in particular because of the small
computational load of allowed by FFT.  Another motivation
was to facilitate research and shorten development duration,
therefore allowing more time for tuning and testing.
However, other representations, such as a Wavelet
Transform (implemented in a fast algorithm) could have
been used as well [Kro87]. It even seems that a Wavelet
Transform would lead to better results because of better
time resolution at high frequency and better stability at low
frequency. Let us call |X(k, f)| the magnitude of the STFT at
sample k and frequency f. It is computed from the sound
signal on a window of size N and with a step size S.

Fig. 1. |Xf (k)| showing an energy peak in observation

window Wm in frequency band f.

3.1 Construction of the observation function
For the goal of detection, the definition of an attack adopted
in this work is an area of short duration of the STFT in
which marked energy peaks appear in several frequency
bands. Examining the energy in one frequency band, i.e.
fixing f to some value leads to a monodimensional signal |Xf

(k)| in which short duration peaks are looked for. The signal
|Xf (k)| is studied in observation windows Wm of length K at
locations m. A peak is supposed to occur in an observation
window when  |Xf (k)| shows a triangular shape with a high
maximum above prior and post plateaus (Fig. 1). Typical
value for K is 18 ms. Therefore, in window Wm, the next
step is to approximate  |Xf (k)| by such a triangular function
and to measure its height. To keep computational load low,
we avoid classical optimal estimation. Instead, the
maximum of a possible peak is said to be the maximum
value M of |Xf (k)| in Wm. and the edges of the triangle are
easily estimated linearly by using mean square error
minimisation.
Calling Mb (respectively Ma) the mean of |X f (k)| in the
window W m before (respectively after) the triangle, an
indicator function is computed as (except for some special
cases):    f m b a b aI M M M M M M, /= −( ) + −( )( ) +( )
If,m (Fig. 2) takes large values when there is a large peak in
the window Wm. For sake of simplicity, the center of gravity
of the triangle is chosen as the precise instant of the attack.
It would be interesting to use better estimates of the precise

perceptual time of the attack as studied in various
psychoacoustic works such as [Gor87]. But the main goal of
this research is detection and modeling of transients, for
which the center of gravity of the triangle is precise enough
since its duration is only a few ms.

Fig. 2. Observation function If,m of peaks in the STFT |Xf (k)|

 for a note of a percussive instrument.

3.2 Selection of aggregates and final decision
A threshold To is applied to If,m leading to a thresholded
observation Jf,m=If,m if If,m > To , 0 otherwise (Fig. 3). Non-
zero values of Jf,m indicate peaks in the STFT.

Fig. 3. Thresholded observation function Jf,m of peaks in

the STFT |Xf (k)| for a note of a percussive instrument.

Then the areas of the STFT in which several peaks appear at
close temporal positions are aggregated as one attack. Let
(f,m) be a point of the STFT where Jf, m takes a non-zero
value. Since the location of such a peak is not precisely
known, we define an uncertainty interval I(f,m) =[k-p(f,m),
k+p(f,m)] where p(f,m) = pmax (1 - exp(β Jf,m)) where pmax and
β are parameters. Then two points (f1,m1) and (f2,m2) are
aggregated if their intervals overlap or if they are aggregated
with a common other point (transitivity):
Agr((f1,m1), (f2,m2))  if:      I(f1,m1) ∩ I(f2,m2) ≠ ∅  or
      ∃  (f3,m3) s.t. Agr((f1,m1), (f3,m3))) and Agr((f2,m2), (f3,m3))
 An aggregate Al is any set of points which are aggregated
according to the previous definition.
Al = { (f,m) s.t. for each (f1,m1) ∈  Al, Agr((f,m), (f1,m1)}.



The weight of an aggregate is the sum of the values Jf,m over
the aggregate. Only the aggregates the weight of which is
higher than a given threshold T a, are preserved and
considered to be detected attacks.

3.3 Data base and choice of parameter values
To tune parameter values and to test the detection algorithm,
a data base of 75 recordings of various types has been built
and each of the 390 attacks has been hand marked with a
time tag independant of frequency. There are 17 recordings
where 305 attacks are mixed with sustained sounds and 58
recordings where attacks are isolated. This data base is not
large enough for statistically significant results, but a larger
data base would require much time for hand marking of
attacks. Optimal parameter values have been found rather
dependent on the type of sounds (polyphonic or not,
clear/soft attacks...). The tests however permitted to
determine ranges for the parameters allowing good results.

3.4 Weighting according to Frequency
In order to evaluate the reliability of various frequency
channels, the positions of the non-zero values of the
thresholded observation function Jf, m are compared to attack
marks placed by hand. For each channel center frequency f,
a non-zero value occurring within less than 10 ms of an
attack mark is considered as a good detection. Otherwise, it
is considered as a false alarm. The number of good
detections and false alarms is calculated for each frequency
and for various threshold values. As an example, figure 4
displays the number of good detections and false alarms,
versus the various channel center frequencies from 0 to 22
kHz. It appears that channels in the frequency bands from 9
to 20 kHz  give  a  more reliable  information Jf,m than others

Fig. 4. Number of good detection (top) and false alarm (bottom)

versus channel center frequency (kHz).

and that the lowest frequency bands cause a great number of
false detection. It would be interesting to study the
reliability of frequency bands according to the analysis
window size N, and according to the low frequency
stationary content, but this has not been done yet. As a
result of the reliability measurement, the various frequency
bands have been weighted according to their reliability. An
evaluation of the detection algorithm has been done on the
17 recordings (305 attacks) where attacks are mixed with
sustained sounds. The other recordings have been
disregarded since it was relatively easy to choose
parameters so as to have no errors in an isolated context. On
the contrary,  detection of  attacks in  a multiphonic  context

Fig. 5 Percentage of good detection versus percentage
of false alarm for various threshold values T2

 and for pmax = 5 (-), 10 (--) and 15  (...).

can be extremely difficult. Note also that the evaluation was
done before frequency weights were introduced. Figure 5
displays the percentage of good detection versus the
percentage of false alarm for various threshold values T2

from 5 to 130 and for pma = 5, 10 and 15. The figure 5 shows
that, for instance, 80% good detection can be obtained at the
cost of some 10% false alarm. Considering the fact that
these recordings contain a variety of mutiphonic contexts
and that, therefore, some attacks are covered by sustained
parts of the sound, the results shown in figure 5 are
promissing. Further more, it is the guaranteed minimum
performance since the only non-fixed parameter is then the
proportion of good detection versus false alarms. On the
contrary, adjusting the different parameters according to the
type of sound and recording context leads to better results.
Also, for additive synthesis applications, only the most
prominent attacks need to be detected. Finally, there is no
doubt that the algorithm can be significantly improved on
several points. For instance, it is necessary to better
understand when and why false alarms occur. Among
possible improvements, lets us quote the frequency weights
and the use of multi-resolution analysis which is expected to
improve the reliability of the algorithm in low frequency
bands particularly.



3.5 Time-frequency representation and
reconstruction of attack transients
For each detected attack, the values of the STFT X in the
aggregate Al, i.e. a subset of the STFT, are considered as the
time-frequency representation of the attack. The complex
STFT is used here in order to exactly reconstruct the attack
signal al(n). The reconstructed attack signal can then be
subtracted from the original signal to remove the attack in a
recording, or it can be added to the additive synthetic signal
to improve the sharpness of attacks. This time-frequency
representation is a an ensemble of STFT values which are
null everywhere, except in the aggregate where it is equal to
the original STFT. In order to compute an optimally
reconstructed signal al  (n), it is thus necessary to use a
reconstruction algorithm, such as the method of [Gri99]
which is applied here.

3.6 Adjustment of the size of reconstructed
attacks
When reconstruction is done from the aggregates formed
during detection (detection aggregates), reconstructed
attacks are of very short duration. Effectively, to avoid
spurious detection, the observation threshold To is rather
high. Therefore, the reconstruction aggregate is defined
with a reconstruction threshold Tr < To. Adjustment of Tr

allows user control of the size of the reconstructed attack. A
supplementary improvement could use a modeling
technique better adapted to modeling some of the short time
resonance which follows the attack. For instance,  the
Resonance Modeling analysis technique [Pot86] could be
used to better extract the resonance modes following the
attack itself.

3.7 Implementation and graphical user
interface
A detection, modeling and reconstruction program, named
TransAn has been implemented. Its GUI  facilitates usage
according to user needs. It allows visualization of STFTs
(sonagram), observation functions, aggregates, detected
attacks and original and reconstructed sound signals. It also
allows the user to adjust parameter values according to
sound or visual results. Detected attack instants and
reconstructed attacks are stored in an SDIF file using the
marks type and the time domain samples or the STFT type
(http://www.ircam.fr/anasyn/sdif/standard/types-main.html).
This program has been applied to some of the sounds of the
Sound Analysis and Synthesis Panel at ICMC2000,
significantely improving additive resynthesis. Other
examples will be demonstrated at the conference. For
instance, a performance of Indian Sarod (strings) and Tabla

(percussion) has been analyzed. Tabla attacks have all been
correctly detected, modeled and resynthesized.

4. Perspectives
The detection, modeling and reconstruction program
T r a n s A n  appears very useful for various musical
applications. Used as a complement to sinusoidal additive
analysis, it improves the sharpnes of attacks. It can also be
used to detect and extract attack transients which can be
used in further musical processing, for instance as the
excitation of resonating filters [Pot86]. A large data base of
sounds and a systematic statistical study of transients would
provide a priori information (probability distributions) of
attacks and permit to optimize parameter values, to improve
the shape of the approximation function and to optimize
weightings according to energy and frequency bands.
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