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|EEE. Before the investigation is started it is necessary to define

Abstract— This article investigates into the estimation of time the notion of a sinusoidal component. In the following we

varying amplitude and phase trajectories of sinusoidal signal cqonsider a sinusoidal component as a nonstationary shusoi
components. The new algorithm adaptively optimizes the param- of the form

eters of a smoothly connected piecewise polynomial trajectory
model. A mathematical analysis is presented that relates the user Pr(n) = Ag(n) cos(Px(n)), 1)
selected meta parameters of the trajectory model (polynomial

order, segment size, and smoothness at the junctions) to thewhere k is the identifying index of the sinusoid in the
analysis properties of the adaptive algorithm. It reveals new model, n is the discrete time andl,(n) and ®,(n) are the
insights into the relationships between the meta parameters amplitude and phase trajectory of the sinusoid. The angitu
and the resulting time/frequency resolution of the estimate. . . . o . .
Moreover, it is shown that for efficient optimization the phase traJeCto_ry IS constra_lned to be _bandll'm'ted' Even W't_h this
trajectory needs to be represented in a specific form. A new constraint the definition of a sinusoidal component is not
approach to address the bias/variance tradeoff of the polynomial sufficiently restrictive, because a simple Fourier tramsfof
phase trajectory model by means of regularization is presented a time limited signal could be interpreted as a collection

and a complete adaptive analysis/synthesis system for $inusoidalof constant frequency sinusoidal components. Likewise a
sound components is proposed. The adaptive analysis system . . . . .
is investigated by means of simple tracking experiments to wideband frequency modulation (FM) [9] of a single sinusoid

demonstrate the effect of the smoothness constraints and cpare  USing modulation frequency in the audible frequency range
the results with a standard STFT base frequency estimation would perfectly match this definition of a single sinusoidal

technique and known Cramer Rao bounds. The potential of the component. In both cases, however, the parameters of the
adaptive strategy for the modeling of sinusoidal transients is sinusoids obtained are not related to the perceived sound

discussed and it is shown that it achieves similar transient quality o L .
as a previously proposed method, however, with considerably characteristics, such that an intuitively meaningful coinof

lower model error. Two examples for modeling real world signals the signal parameters is difficult. Therefore, the pararsedé
are discussed. a sinusoidal component should obey a simple relation to the

perceived sound characteristics.
The detection of sinusoidal components and the estimation
|. INTRODUCTION of their parameters is usually based on the analysis of iglect
peaks in the short time Fourier transformation (STFT) of
The estimation of the parameters of sinusoidal componetie signal. As a result the values of amplitude, phase and
from an observed signal is a major step for many signtiequency are available only at the frame centers of the STFT
processing applications. One of the main applications in aand the problem to connect and interpolate the parameter
dio signal processing are additive analysis/synthesitesys trajectories arises [5], [10], [1]. While the use of the STFT
These are trying to represent a given sound signal, or at lefts parameter estimation is computationally effective tieed
part of it, by means of the superposition of time-varyingp heuristically connect and interpolate the parametera is
sinusoids. Additive analysis/synthesis has been suadbssfsignificant drawback.
applied to speech [1], [2], [3], [4] and music [5], [6], [7], It has been stated very early [3] that estimation of the
[8]. The analysis of a sound signal in terms of a sinusoidphrameters of an additive model by means of minimizing a
model brings up a number of issues related but not confineganingful cost function would be a very promising approach.
to these questions: what is a sinusoidal component, what parfirst step towards an adaptive algorithm was the QUASAR
of the signal should be represented by sinusoids, what otlsggnal model [8]. Similar to the model proposed in the fol-
signal models (for example noise) can be combined with thaving the QUASAR model starts with the specification of
sinusoids to achieve an efficient representation with meam4rajectory model, which is a smoothly connected piecewise
ingful parameters, how are the parameters of the sinusoftsynomial function. The optimization procedure, howevsr
represented and estimated, and how are the meta paranfetebseed on an intermediate representation of phase and ampli-
the analysis/synthesis system selected. The preserieanilc tude trajectories obtained by means of heterodyne filtegngd
be concerned mainly with the problem of representation angluires the sinusoids to stay close in frequency to arallyiti



selected nominal (or center) frequency. Because the nomin: L Complete set of B-Splines of order 4
frequency of a sinusoidal component can never change this ‘ ‘
requirement is quite restrictive and the major benefit of the0.9f
continuous phase trajectory model, which is the improvecgg| _
representation of nonstationary sinusoids, is not exgioit --
Because the analysis properties of the adaptive model &ird th 0.7
relation to the polynomial order have been unknown, the siz.6f
of the polynomial segments and the polynomial order of the, 5|
QUASAR model had to be selected without taking the analysis
properties into account.

A further adaptive approach that has been formulated iro.3},
a Bayesian framework has been presented recently in [110'2,’/
In this case the model components are quasi-harmonic se |
of sinusoids that are adapted to represent quasi-harmon®1j
sound sources. The approach appears to be promising o
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solve the difficult problem of source separation. Howeues, t
parameter trajectory model that has been used is very timite DFT of B-splines
and supports sinusoids with fixed frequency, only. o |
In the following article we will derive a clear understanglin %0 }
of the analysis properties of analysis/synthesis systdras t | |
are based on the minimization of the mean squared errc (N
(MSE) of sinusoidal functions with piecewise polynomial ] | "~
parameter trajectories. A detailed mathematical anabfsiise ob I\ R
global minimum is presented which proves the need for ¢ k. Tl
specific representation of the phase trajectory of the mode ~°] "\ el
Furthermore, the relations between the meta parameters ' _xof \\/\ e
the trajectory model (the polynomial order and the segmen N
size), and the resulting frequency and time resolution are °[
established. Based on the new theoretical insights artitera -40} RN
adaptive estimation procedure is proposed. The goal of thi /\ T
algorithm is the extraction of the parameter trajectoriethe 0 0.05 w/2pi 0.1

sinusoidal components of the signal such that it may be used _ o _
| t of the sinusoidal module of existina iedit Fig. 1 A complete set of B-splines and the|_r discrete Fous@ctra for
asan re_p acemen g a trajectory of length 400 samples. The B-splines shown halieesorder
synthesis environments. Because the proposed method wilt 4 and segment length/ = 100. At each side of the trajectory 3 zero
represent only the sinusoidal components further modeliﬁ%e segments have been inserted to remove any smoothnessictssit
f the residual is required [7] [8] The adaptive anal Si'[h endpoints of the trajectory. Note that, while the Brsgdi cover always 4
0_ - a ’ R, ) p YSlsegments some of the segments may have legthch that the related B-
significantly reduces the part of the sinusoidal energy th&tine will be shorter. The smoothness of the B-splines igeimging with the
leaks into the residual such that the noise model may betf@mberl of nonzero length segments that are covered. For longectoajes
. only the number of maximally smooth B-splinds=£ 4) would be increased.
match the residual.
Note, however, that due to the nonlinear adaptation in-
volved the proposed algorithm is computationally much more
demanding than the STFT based parameter estimation pro-
cedures. With the current implementation in MATLAB theexplain, how the meta parameters of the piecewise polyriomia
computation required is in the order of 2000 times real-tinteajectory model affect the time and frequency resolutién o
such that an application is proposed only if minimization dhe estimation and in section IV we present a description of
the parameter estimation error is crucial the optimization algorithm that is used and investigate the
A new means to handle the bias/variance tradeoff famplitude scale dependency of the adaptive optimization. A
polynomial trajectory models [12] is proposed. It consists complete algorithm for detection and adaptive optimizatid
extending the objective function by means of regularizaticsinusoidal components is presented in section V. In se&flon
terms that control the smoothness of the phase parameterexperimental investigation into the tracking perforoeaof
trajectory. By means of simple tracking experiments we withe adaptive algorithm is presented and the relation to the
compare the results obtained by means of adaptive param&eamer Rao bounds for frequency estimation is discussed.
estimation with a traditional STFT based estimator and wilh section VII the problem of modeling attack transients is
discuss the relation to the known Cramer Rao bounds of thddressed and a simple yet effective strategy to reducad¢he p
frequency estimation error. echo of the model is presented. Experimental results atdain
The article is organized as follows. In section Il we presemtith real world sounds are described in section VIII and
the parameter trajectory model that is used and give a shant outlook on future developments concludes the article in
introduction into the theory of B-splines. In section 1l wdl  section IX.



Il. THE PARAMETER TRAJECTORY MODEL of size M will be used frequently and will be denoted as

In the following section we present the piecewise polynd?.(1). According to eq. (2) a single sinusoid with amplitude
mial trajectory model that will be used for the amplitude an@nd phase trajectory represented by means of B-splinesidas t

phase trajectoriesl;(n) and ¢y (n) in eq. (1). following form
Piecewise polynomial trajectories are commonly used in Po(n) — Aubi(n) cos(S @b (n). 3
additive models to interpolate the trajectory parametbeg t k() (Zz:< kibi(n))) (zi: kibi(n)) ®)

ha_ve been estimated at the center positions of t_he STFT awé free model parameters are the B-spline coefficiehis
ysis frames. In that case, the polynomial order is deterd’nn%1

by the available information and the size of the polvnomi nd ®,;. Note that in contrast to most of the known additive
y . polynon ofdels the trajectory model used here does not restrict the
pieces, the segment size, has to be equal to the hop size

X o plitude to be nonnegative. This is suitable for the caserwh
the analysis such that the polynomial pieces start and en % . . L
a frame center of the STFT [1]. For the adaptive model tcfgen amplitude trajectory to be modeled changes its sign. As

arameter trajectory also consists of segments, the pigfces example one can imagine the case where two unresolved
paran ray y a: ) -9 ' P Sinusoids have similar amplitude and need to be represented
the piecewise polynomial function. In this case, the sedme

. i rI?Jy means of a single amplitude modulated model sinusoid.
are fundamental and can be selected without referring uarotq.he representation of the amplitude trajectory can be wetiie

parts of the model. The analysis frames of the STFT obtajr . - .
their counterpart in the adaptive model in form of the bas] fther by means of & strictly positive amplitude and a phase

i : S §tep of sizer or by a smooth phase and a smooth amplitude
splines (B-splines) that, as shown below, are implicitlfirozd sigr? change Wh)ille smooth zign changes of the ampplitude
by the user defined segments. .

trajectory can be naturally expressed in eq. (3) by means

The representation of the piecewise polynomial trajeetori . . : ; X
. . f fficients with varying sign, the representation of ggh
by means of B-splines renders the mathematical treatmmnt sP coefficients with varying sign, the representation of g.1a

le and straiahtiorward 131, A piecewise polvnomial fuoat jumps or the restriction of the amplitude to be nonnegative
P straightforward [13]. A piecewis polynomialtunat ¢ g require complicated nonlinear extensions of thengpli
z(n) of order(o—1) can be expressed by linear superpositi

o, L . .

. : . . odel and would significantly complicate the mathematical

of basic functions, the B-splines of order following analysis and the adaptive optimization.

z(n) = Z Bibi(n). ) The additive model that is used to represent the sinusoidal
i components of a sound sign&l(n) is simply a sum of all

Here B; is the weighting parameter of theth B-spline of sinusoidal component®, and in a straightforwarq gppr_oach
order o, b;(n). The B-splinesh;(n) are completely defined the model parameters could be adapted by minimizing the
by their ordero and the sizes of their segments. Due to thefluared model error
Iipear guperpositioq it is obvious that the B-splines havbé Ey = Z E(n)? = Z(S(”) _ Z Pe(n))2. (4)
piecewise polynomial of polynomial order— 1, too. Every - =
B-spline coverso segments of the trajectory, some of which
may have size zero. The B-splines are maximally smooth lll. M ODEL PARAMETER SELECTION
everywhere, besides at the locations where segments of sizEor existing analysis/synthesis algorithms the properie
zero are covered. Each zero size segment inserted at a nibdeanalysis procedure are characterized by means of teé tim
position reduces the degree of smoothness at that positfoequency resolution that can be obtained. The time resolut
by one. To select a proper trajectory model we note thatdetermined by the size and shape of the analysis windew, th
the order of smoothness of the parameter trajectories ofraquency resolution by its spectral mainlobe width ane-sid
sound signal is generally unknown. There exist sound ssurclbe height. In this section the corresponding characitdn
e.g. vibrating bars and strings, flutes and pipes, thatdbssiof the properties of the minimum mean squared error solution
during the attack, can be considered to have maximally dmoaif eq. (4) will be established. It will be explained how the
parameter trajectories. For others there may exist isblatdme/frequency resolution of the representation of simedo
points with reduced smoothness. As will become clear lategmponents using the piecewise polynomial trajectory rhode
the reduction of the smoothness entails a reduction of tigedetermined by the B-splines.
frequency resolution, and renders it time dependent. As aDue to the time varying frequency of the sinusoids the
result, the parameter trajectories may become systeraticanathematical analysis is involved. In the appendix we study
modulated which makes parameter interpretation diffictdt. the frequency resolution by means of deriving the impact of a
circumvent these problems we will enforce the parametperturbing signal on the minimum error parameters obtained
trajectories to be everywhere maximally smooth, besidesfat the representation of a single target sinusoid. It rksyea
the start and the end position. Consequently, the zero sthat the impact of the perturbing signal depends on the cor-
segments will be present only at the start and the end ofredation between different parts of the target sinusoid ted
trajectory. perturbing signal. Because the parts of the target sinuedie

An example for a complete set of B-splines that is necessamyrrelated are determined by means of windowing it with the
to represent a piecewise polynomial function with a possibdlifferent model B-splines it can be deduced that the frequen
step at the start and the end and smooth segment junctionsrémolution that is obtained for the minimum error solutidn o
spline ordero = 4 and segment sizé/ = 100 is shown in eq. (4) is determined by the Fourier transformation of the B-
fig. 1. The maximally smooth B-spline, coverimgsegments splines in quite the same manner as it is determined in the

n



standard analysis by the Fourier transform of the analysis w
dow. It is well known that the time resolution of an algorithm
is inversely related to its frequency resolution. Because t
B-splines are the independent objects that are superposed t
construct a trajectory, the size of the B-splines can be ased
rough indication for the time resolution. This is confirmed b
the results obtained in the appendix concerning the beha¥fio
the model with respect to model errors. It is shown that these
errors will be distributed over neighboring parametershwit
oscillating sign and decreasing amplitude. The trajectorgr
decreases to less than 10% withito neighboring segments.
Note that for the modeling of sinusoidal transients a specia
post processing will be proposed to significantly reduce the
pre-echo that is due to this distribution of the model errors
The results discussed so far allow us to draw some important
conclusions for the use of the adaptive algorithm:

1) To derive a fundamental understanding of the spectrum
of the B-splines we consider the maximally smooth B-
spline BS,(n) for a constant segment lengiii. Using
the recurrence relation [13]

- 1 for
B 0 else
BS,(n) BSi(n) * BS,—1(n)/M,

we find that BS,(n) can be constructed by means
of (o — 1)-times convolving a rectangular window of
width M with itself. Therefore, the Fourier spectrum of
BS,(n) will be the power of ordelo of the spectrum
of a rectangular window having mainlobe width of
size 2rrad/(2M) and sidelobe attenuation - 13dB.
Due to increasing sidelobe attenuation the impact of
distant signal components on the parameters of a model
sinusoid will be lowered with increasing spline order

The price to pay is a decrease in time resolution due
to the extended lengttBS,(n). To achieve sufficient
sidelobe attenuation we generally select 4.

The B-splines that affect the frequency resolution dyrin
optimization are defined by their active part, which

is the part that is used to calculate the model error.
Consequently, parameters related to B-splines that are
not fully covered by the analyzed signal segment should4)
not be adapted because the effective B-spline is cut
which significantly reduces the sidelobe attenuation.

It is well known that modeling phase trajectories with
polynomial functions requires a bias/variance tradeoff.
Increasing the polynomial order reduces bias because the
model is less constrained but increases variance because
the model may start to represent noise energy from
the neighborhood of the sinusoid. The investigation in
[12] reveals that phase and frequency estimation with
completely unconstrained polynomial segments results
in position dependent Cramer Rao bounds (CRB). For
polynomials of order 4 the CRB varies by more than
12dB. This result is related to the fact that the B-
splines that have to be used to create an unconstrained
polynomial segment have significantly different fre-
quency resolution. Due to the superposition of the By

BS(n) n € [0, M]

2)

3)

trajectory. As a result the estimated parameter trajectory
becomes modulated due to the time varying impact of
distant signal components. For the maximally smooth
trajectory model that has been proposed here the B-
spline BS,(n) can be used everywhere, besides at the
start and end of the trajectory (see below). Therefore,
the frequency resolution will be nearly constant and
the systematic parameter variations are significantly
reduced. The experimental investigation showed that
the smoothness constraint reduces the impact of the
polynomial order on the variance because the increased
flexibility is accompanied by increased constraints. By
means of adding regularization terms to the objective
function eq. (4) further smoothness constraints can be
created, that give rise to a continuous control over the
variance of the phase estimation. For a spline order
o = 4 possible constraints affect the second and third
derivative of the phase trajectdtyConstraints of the
first derivative of the phase trajectory are impractical
because they restrict the range of possible frequencies
of the sinusoidal components. For the second derivative,
the frequency slope, we use a regularization term of the

form
2 .
RQ,k(n) = ( an2 E) W|th F2 = m (5)
The regularization of the third derivative of the phase
trajectory, the frequency curvature, is obtained by means
of

62<I>k(n) 1 2m

3

Rotn) = (55 with Fy= 25 (@)
The slope and curvature limitd; and F3, are related
to the segment siz&/ to ensure that the effect of the
regularization term does not change with the size of
the polynomial segments. The regularization factors are
added to the objective function to be minimized which
then becomes

Er=FEy+ Z Z()\QRQk(n) + )\3R3,k(n)) (7)
k n

A problem of the initial version of the adaptive al-
gorithm [14] were the physically unmotivated modu-
lations within the border segments of the trajectories.
As mentioned above these modulations are due to the
fact that an inhomogeneous set of B-splines has to be
used to represent trajectory borders. Some of these B-
splines have significantly reduced frequency resolution
and reduced sidelobe attenuation such that the parameter
trajectories will be heavily affected by distant sinusbida
components. Remedy is simple for the amplitude trajec-
tories because due to physical constraints the two least
smooth B-splines are not needed to achieve high model
quality. The phase trajectory, however, will generally be
different from zero for both ends of a sinusoid such that
all the B-splines displayed in fig. 1 are required.

1Throughout the article derivative with respect to is understood to
present the derivative of the underlying time continuouscfion with

splines, the frequency resolution will vary along theespect to time at the position of sample



The oscillation of the phase trajectory at the trajectomyith
borders is a serious problem. In order to track a sinusoid

into a subsequent segment an initialization of the phasef11 =2 Y _ b;(n)? cos(®(n))* & Y b;(n)? 9)
trajectory of the new segment is required that has to n n
be derived from the phase trajectory of the previous Hi2 = H21 ~ 0 (10)

frames. To improve the reliability of the initialization of  f7., ~ Q(Z(A(n)Zbi(n)Z cos(®(n))?
the extension we rely on our analysis of the frequency

n

resolution of the different B-splines. From fig. 1 we con- 87b;(n) .,
clude that the results for the values at the first inner node + > /\I(W) ) (11)
of the trajectory, are only weakly influenced by the two 1={2,3}

border B-splines and provide a better basis to initialize 0'b;(n

the extended trajectory. Therefore, the extension of the ~ ZA(")Qbi(”)Q +2( Z Ar( F,aglz))% 12)
phase trajectory is obtained by means of extending the " I={2,3}

trajectory with constant frequency slope starting frorhe approximations above are related to the fact that we have
the last inner node position of the trajectory. While thissed the relations

procedure ensures reliable extension of sinusoidal pa- A o -

rameter trajectories it cannot avoid the modulations that Z (n) cos(®(n)) ~0

remain after adapting the initialized trajectory. To regluc " ) (13)
those modulations the regularization terms mentioned ZA(”) cos(®(n)) sin(®(n)) ~0,

above may be locally increased for the first and last "

polynomial segment. that are due to the fact that the amplitude trajectories ef th

sinusoids are required to have limited bandwidth which is

always smaller than the frequency of the sinusoid. Inspecti
IV. PARAMETER OPTIMIZATION of the equationsH;; and H,, that determine the lengths

of the two principal axis of the contour ellipsoid of the

To efficiently adapt the model parameters any second orddliective function reveals two problems. The first one is due
optimization algorithm may be used. In this section we wiflo the fact that the relation between the regularizatiomter
briefly present the optimization algorithm that has beerseho and the error term of the phase derivative depends on the
and discuss a general problem of the optimization process tAmplitude of the sinusoid. This is disadvantageous because
is related to amplitude scaling of the sinusoids. the impact of the regularization would change after a simple

The adaptive algorithm used for the following investigatio@MPlitude scaling of the signal. The second one is due to
is the second order scaled conjugate gradient algorithm pfp€ fact that the ratio of the principal axis is affected by
posed in [15]. It is a conjugate gradient algorithm [16] thépe_ a_mpl_|tude of the sinusoid. l_\Iote_tth mult|d|_mer_13|onal
has been modified to efficiently adapt nonlinear functiorth wioPtimization of a (locally) quadratic objective functios per-
many parameters. The basic idea is to avoid the line seaf@fmed most efficiently if all diagonal elements of the Hessi
in the conjugate gradient algorithm by means of estimating™&ve Similar magnitude. In this case the correct solutiam ca
local quadratic approximation of the objective function. ~ P& obtained in a single step. In the present case, however,

An important requirement for the successful application (ﬁe ratio of the magnitude of the_ dlagon_al elements_ of the
an adaptive algorithm to optimize sinusoidal parametetisas essian matrix changes systematlc_:ally with the e_lmphtuble 0
the convergence properties do not change when the target gi target sinusoid. For large amplitude the gradient dwkce

nal is rescaled by means of a constant amplitude factor.iidVitIY"hl.lCOfnS'der ﬁdaptl?tg :jhe zhaf_e ptahrametelri rc;\ore |mpo:tant
audio signals there generally exist sinusoids with amgtu while Tor smafl amplitude adapting th€ amplitude paranseter
Y&llu be favored. To avoid these inconsistencies we modify th

covering three orders of magnitude or more and the behav larization t b ¢ multiolvi h th
of the adaptive estimation should be similar for all of thenfodu'arization terms by means of muitiplying wi € Sepahr
odel amplitude trajectory

To highlight the problem we study a quadratic approximatioW
of the global minimum of th(_a obje_ctive fL_mctio_n ed. (7) foeth R/I,k(n) = Rr..(n)Ar(n)?, (14)
case that the target signal is a single sinusoid with pammet ] o ) .

trajectories that can be modeled without error. AccorgingiSuch that the impact of regularization will be independent o
the model contains only a single sinusoid = 1). The the amplitude of the sinusoid. Moreover, we use scaled B-

quadratic approximation of the objective function at thebgll  SPlinesb;(n) given by

optimum is completely described by its Hessian mattx S bi(n)

For simplicity and without restriction of the generality e bi(12) = bi(n) = TRIRE
results we are going to study a subset of two parameters \/14(7”‘)2((%(”)2 + 2(21:{2,3} Ax( FronT )?))
and ®4;, only. We obtain (15)

for constructing the phase trajectory in eq. (3). Scaling th
Hy  Hi %b;e;r 325% phasg B-splipes ensures that the contour !ines of the error
H = ( Hor  Ha ) = o o, ) (8) function are independent of the target amplitude and always
nearly circles. Because the scaling factors are not cayrsiy

9A1,001; oPZ,



meaningful information they should be considered fixedryri Start
adaptation. However, they are monitored, and whenever the

optimal scaling factor differs from the current scalingtac Init user parameters
by more than a factor two the scaling is changed and the
conjugate gradient algorithm is restarted. The scalinghef t v
phase B-splines is important to achieve good convergence ffo Extend, adapt and validate
all sinusoids of the model, however, it does not affect the existing sinusoids -
theoretical investigation, and therefore, we will ignoke t
scaling of the phase B-splines for the ongoing discussion. ¥
Stop and reset invalid
V. THE ADAPTIVE ALGORITHM extensions
The theoretic results presented so far have led us to consid- v
erably revise our first iterative adaptive additive modet][1 Select, init and adapt new
In this section we give an outline of the implementation @& th sinusoids
algorithm that will then be studied with respect to its pndies ¥
when estimating the model parameters. X
The algorithm is iterative which means it adapts only aAdvance to next signal segment
single sinusoid at a time. The reasons for this decision aref
« the difficulty to correctly handle the multiple solutions

that exist when sinusoids close to each other are adapted )
together, end of signal?
« the difficulty to correctly initialize the weak sinusoids No

from the signal spectrum without first removing the
strong ones,

The phase trajectories use a full set of B-splines such that
the sinusoidal phase function can start and end with arpitrasig > Fiowchart overview of adaptive algorithm.
values. The amplitude trajectory is constrained to have 1st
order smooth boundaries such that the two least smooth B-
splines are not used. As objective function we minimize eqnly for partial initialization the transient detector ciers
(7) with the modified regularization terms given in eq. (14dnly onset transients. The possible abrupt ending of sidaso
and using scaled phase trajectory B-splines according to @gjl be properly handled by the sinusoidal validation madul
(15). The signal segment that is used for training is a didir(section V-A).
window covering a maximum of{ polynomial segments, Using the maximum peak of the spectrum we initialize a
where K > o is a user selected parameter. For largér new sinusoid with fixed frequency and all amplitude coeffi-
the estimation results will be closer to the global optimuntjents besides the one related to the center B-spline ta zero
however, at the expense of increased computational costs.The center amplitude coefficient is initialized accordimg t
a reasonable compromise one may consitdler 20. This will the standard additive analysis procedure. The new sinusoid
allow any parameter oscillations due to model insufficieaci adapted and after convergence is subtracted from the signal
to decay sufficiently before the parameters will be fixed. A$ is checked for its validity as described in section V-A
discussed in section Il only parameters related to B-gglinand marked according to the decision. Sinusoids that have
that are fully covered by the current segment are adapted.been initialized from transient peaks are a priori invalid
An overview over the basic steps of the algorithm is prand are adapted with respect to amplitude coefficients only.
vided in the flowchart in fig. 2. The algorithm is implementednvalid sinusoids are subtracted from the signal to preeent
in a pseudo code listing in listing (I). As shown there thanfinite loop when selecting the next sinusoid. These temuyor
algorithm starts considering a signal segment of the size e@dmponents, however, will not become part of the model and
BS,(n). This segment covers polynomial segments. The are deleted after the adaptation of the current segment has
main loop of the algorithm makes use of a STFT peak pickirgeen finished.
technique to detect and initialize new sinusoids using the-s  After subtraction the current error signal is calculated an
dard analysis method described for example in [7]. To obtairsed to select and initialize the next sinusoid. To ensuaié th
consistently initialized sinusoids we ugeS,(n) as analysis the iterative algorithm will not use more than a single saids
window. Because the adaptive algorithm will only productor each spectral peak, the residual spectrum is maskedeby th
reasonable results if the sinusoid is sufficiently coveresl vexisting sinusoids as described in section V-B. The iteeati
start by classifying the spectral peaks into transient am@ n selection of new sinusoids repeats until the maximum number
transient ones. As described in [17] this can be achieved bfyactive sinusoids requested by the user has been collected
means of calculating the mean time [18] for each spectrd.pear a new sinusoid does not exceed a user supplied limit for
If the mean time of a single peak is above a threshold it it mean absolute amplitude.
marked as transient. Because peak based processing is usédter the current segment has been modeled the algorithm



;(,-gna, - Qéwgle{OOLzE%Tents to adapt they overlap the dead sinusoids of the last cycle by exactly
model = empty (o — 1) polynomial segments.

bslen = length of smoothest B-spline

sigseg = first bslensamples of signal

numparts = max number of sinusoids in model A. Determining the validity of a sinusoidal component

minamp = minimum amplitude for a sinusoid to stay alive .. . . .
demodel = adapt sinusoid with fixed phase==0 to remove dc Most additive analysis schemes include a mean to determine
signal = signal - dcmodel the end of a sinusoid. The correct detection of the end

while sigsegnot at end of signal

modsort= sort model sinusoids according to mean amplitudes
for all extsinin modsort
extend amplitude trajectory by changing B-splines
keeping old coefs and add new zero value coef.
extend and adapt trajectory ektsin (see section IlI)
determine validity ofnewsine(see section V-A)
mark invalid sinusoids as stopped

of a sinusoid is important because otherwise the parameter
trajectory will be used to model unrelated sinusoids whigym
give rise to artifacts because the target parameter tomjest

are inconsistent. In this section the criterion that is used
determine the validity of a sinusoid in the adaptive aldponit

will be described.

‘zggt: e The validity of a sinusoidal component is checked by
while cont comparing its amplitude trajectory to the amplitude trageg
errsig = sigseg- model obtained by heterodyne filtering the signal. The heterodyne

ffterr = FFT of lastbslensamples inerrsig

mark transient peaks iffterr

determine masking thresholds ffterr (see section V-B)
select maximum non masked peakffterr

newsine = new and initialized sinusoid

filtering is done using the phase trajectory of the model
sinusoid to be validated and applyif#fS,(n) as lowpass filter
as follows:

if new peaknot transient ) _ ac(n) = BS,(n)* (s(n)cos(®(n))) (16)
adapt amplitude and phase éwsineuntil convergence .
determine validity ofnewsine(see section V-A) as(n) = BS,(n)* (s(n)sin(®(n))). (17)

else
adapt amplitude ohewsineuntil convergence
mark newsineas invalid
endif
if number of alive sinusoids. numparts
add newsineinto model
else
minsine= model sinusoid with minimum mean amplitude
if ( meanamppewsing > minamp
and meanamp(ewsing > meanamp(ninsing)
mark minsine stopped, addiewsineinto model

Here s(n) is the signal segment to model adgn) is the
phase trajectory of the model sinusoid. Note that the use of
BS,(n) as a filter is motivated by the fact that the DFT
of BS,(n) determines the impact of distant energy on the
trajectory parameters. From(n) anda,(n) a time dependent
complex phasor can be derived

ares(n) = V/(ac(n)? + as(n)?)e’ an2e- b)) (18)

else . . . .
Scont:fa|se which is used as the reference amplitude trajectory. The
endif reference trajectory has an amplitude and a phase component
endif

end
remove all newly born invalid sinusoids fromodel
move sigsegto the nextM samples

end

extrapolates all valid sinusoidal components of the model

LISTING |

PSEUDO CODE DESCRIBING THE ORGANIZATION OF THE ALGORITHM

If the model has managed to track a sinusoidal component of
the signal, the reference amplitude should match the madmit
of the amplitude of the sinusoid and the phase should be
either 0 or = according to the sign of the amplitude of the
model sinusoid. The comparison is done by subtracting the
two amplitude trajectories and calculating a running alteol
normalized MSE according to

Yok (ares(n) = A(n))?
v(k) = == o M—1
> A(n)?

n=~k

(19)

into the next polynomial segment. The extended sinusoiels ar h . of () is | h hreshold th
adapted in the order of their mean absolute amplitude usiy@enevert e maximum of(k) is larger than a threshold the

no more than the lask polynomial segments to adapt thes! usoid is considered to be invalid. The threshold has to be
parameters. All parameters of B-splines not covered byethe%"z‘leCted S_5UCh that mr?dulatefl SIﬂgSﬁldShWIll r:loltjbe EUt'Q!IO? al
last &' segments are considered to have converged and will i €XPeriments we have selected the threshold to be 3%.
longer be adapted. Extended sinusoids that do not match the

validity criterion described below are marked as stoppedi aB. Masking the residual spectrum

reset with the parameters they had prior to extension. Due to the large energy difference between different parts
After the extension of all model components has beer an audio signal it is common that the residual energy in a
performed the selection loop restarts using thedastgments dominant audio band has larger amplitude than the sinusoids
to select and initialize new sinusoids. Old sinusoids afe weak audio bands. Due to masking effects, however, the
stopped if the maximum allowed number of active sinusoidssidual energy will not be perceived. Because the proposed
exists in the model and their average absolute amplitude oadgorithm uses the DFT of the residual signal to initializevn
the lasto segments is smaller then the corresponding vals@éusoids, proper masking is essential to prevent the iaddit
for a newly selected sinusoid. Due to the fact that newboai sinusoids that are irrelevant from a psycho-acousticaitp
sinusoids are initialized using the laspolynomial segments of view. The basic idea proposed in [4] is to exclude all those



peaks in the residual from further modeling that are due &stimates [7]. The analysis window contai2800 samples
modeling errors of the sinusoids already present in the inodand the hop size i500 samples. For the adaptive algorithm
For the locally stationary sinusoidal model presented ih [4ve use the segment sizd = 500 and 4-th order splines as
this masking can be simply achieved by means of excludippase and amplitude trajectory model. The adaptive alguarit
all those peaks in the residual that are closer to the modellows the description in section V using only a single miode
sinusoids than half the bandwidth of the mainlobe of th&nusoid and selectingd = 15. Note that the sinusoidal
analysis window. In our case with time-varying amplitude anevaluation described in section section V-A has been sefitch
frequency trajectories of the model sinusoids a slightlyrenooff. To achieve a comparable setup we U8, (n) as analysis
complex masking procedure is required. window for the additive model. The standard method does

In the following we denote the mainlobe of the spectrum afot provide any reasonable estimates if the analysis window
BS,(n) asT'(w). Because we are mainly interested to mas#oes not fully cover the signal, therefore, these estimates
the residual close to each model sinusoid we Tié@) as not used. The CRB for frequency estimation of unconstrained
the basic masking function. For stationary model sinusoig®lynomial phase signals have been derived according to
with amplitude A; and frequencyw; we can obtain a nearly [12]. The frequency error is specified in dB relative to the
equivalent masking effect as the one proposed in [4] by measamplerate, and frequency values are specified as norihalize
of using A;T'(w—w;) as masking function related to the modefrequencies such that the samplerate corresponds to fregue
sinusoidi. 1.

To take into account the nonstationary amplitude and fre- The first experiment is dealing with the case of a constant
quency evolution we need to redistribute the mask accordingfrequency sinusoid. This experiment simulates the frequen
the effective impact of each instantaneous value of the iammvolution that is common for example in plugged strings or
tude and frequency trajectory. This impact will be contdll vibrating bars. The frequency estimation errors obtairad f
by the analysis window such that a sensible generalizatitve standard additive analysis and for the adaptive model
computes a weighted average of the masking related to thigh varying regularization parameters are displayed in 3ig
instantaneous frequency and amplitude of sinusaiding the (top). Due to the fact that an analysis window has been used,

analysis window as weighting function as follows a common mean to reduce any bias from other sinusoidal
4 BS. (m)[( =) components in the signal, the standard method is abdBt
:(w) = 25 [Ai(n)| BS, (1) (T). (20) @above the CRB for constant frequency estimation. The CRB
> n BSo(n) for the frequency error using a piecewise 3rd order polymbmi

The masking threshold for frequenay and for the complete Phase function with segment size 500 and no smoothness
set of model sinusoids is simply the maximum value of thgPnstraints on the segment borders significantly depends on
individual masking threshold®,(w). The scaling factors the Position within the polynomial segment. The minimum

allows to adapt the size of the masking range. For stationdfy20d5 above the CRB for constant frequency estimation
sinusoids and with scaling factgf = 0.75, the masking [12]. Due to the inherent smoothness constraints, the agapt

threshold will be similar to the one proposed in [4]. For norréauency trajectory achieves a frequency error which i8 we

stationary sinusoids the masking will be lowered and spreBglow the CRB of the unconstrained piecewise polynomial

over a larger frequency band. Note that for the foIIowinawdel even without regularization. For this case the error
experiments the scaling factor is setfo= 1. variance is about4dB below the CRB of the unconstrained

polynomial model and is onlydB worse than the standard
algorithm.

It is instructive to study how increasing the regularizatio

In the following section we experimentally compare thg@ccording to eq. (7) will affect the results. The regulaiza
frequency estimation error of the standard additive patemereduces the degree of freedom of the model trajectory and,
estimator and the adaptive estimator described so far.a#st for the signal at hand, does not introduce any bias. As shown
consists of tracking single sinusoids in noise and the targg fig. 3 for A, and/or A\; being significantly larger than
frequency trajectories simulate important cases for realdv 10-2, the smoothness constraints due to regularization start
sound signals. It will be demonstrated how the regularati to dominate the inherent constraints of the spline mode] and
parameters can adapt the trajectory model to specific totjec consequently, the estimation error decreases. For suffigie

VI. TRACKING SINUSOIDS

characteristics. o ~ large regularization the frequency estimation error drap#
For the following investigation we use analytic signalgelow the CRB of the standard analysis, which is possible
according to because the adaptive method can make use of a larger part of
z(n) = s(n) + r(n) = M 4 r(n). 1) the signal without introducing additional bias. For theiatton

at hand the lower limit of the error variance is given by the
The signals comprisel0000 samples and the variance ofCRB of a constant frequency estimator that uses the data of
the noise sequence(n) is adapted to achieve an SNR ofthe whole signal. For the given signal length the CRB is
0dB within an analysis frame. The reference for frequen@bout —146dB. Due to the fact that the adaptive algorithm
estimation is a standard additive approach using peakmgckidoes not work globally but incrementally tracks the sindsoi
of the maximum in a 32768-point DFT and applying 3never using a signal segment larger than 7500 samples td adap
rd order polynomial interpolation to obtain the frequencthe parameters this limit cannot be achieved. However, én th



tracking stationary sinusoid in noise

constant amplitude chirp signal is shown. The frequencyesio

% ‘ ‘ ‘ ‘ is A; = 4e% such that the frequency variation within the
o5 analysis window is not negligible. Accordingly, the norimati
frequency changes from.16 to 0.32. The example has been
-100 selected to simulate sinusoids with considerable non gierio
= variation of the frequency trajectory. Note that the CRB for
S.-105 estimating chirp frequency trajectories with an uncomséa
b piecewise polynomial model is the same as for constant fre-
E‘llo guency signals. Due to the mismatch between the basis func-
115/ - slope only (3,=0) tions of the STFT and the chirp signal the frequency estionati
—— curvature only (A,=0) o error of the standard method is considerably increased. The
_1p0l| ¥ curvature and slope . adaptive model does not introduce any bias when modeling
- f:tg'aa?s?gwaedd) X a chirp signal, and therefore the error variance is close to
195 : — ‘ ‘ ‘ the previous case as long as no regularization is applied.
4 8 2 _l|og10(x)0 2 Accordingly, for curvature regularization and increasihg

tracking chirp in noise

we obtain approximately the same results as in the previous
experiment. For slope regularization, however, increasig

-20 ‘ ‘ ‘ STy T
ol j; z:?rsztzly 0(2|§/=(0A) o f o : abovel0~2 results in increasing estimation error because the
2 ! model is no longer capable to represent the target trajector
~q0;) " cunaue andslope | ! In the experiment shown at the bottom of fig. 3 the target
std. additive p g g
-50+ CRB (std. add.) /! sinusoid has a phase trajectory with sinusoidal frequency
F —eol . modulation. The center frequency of the sinusoid.&5 and
s | the modulation frequency ig.2421e=%. The extent of the
o 1oy / sinusoidal modulation is a half tone, such that the sinusoid
& -8or ! is resembling a sinusoidal component of a sound signal with
o o vibrato. As shown in the figure, the frequency error of the
100l =8¢ standard additive model is further increased. If no regzdar
tion is applied the adaptive model still keeps approxinyatel
-110¢ the same frequency estimation error that has been obtained
-120, - - - 5 n 5 in the previous experi_ments. We gonclude th_at for the given
log10(A) parameters the B-spline polynomial model introduces only
tracking sinusoid with sinusoidal FM in noise a negligible bias. Increasing the regularization, howeirer
-10 ‘ ‘ ‘ ‘ ‘ ‘ creases the bias such that first the models with regularized
o0l slope and at; = le~! the curvature regularized model can
no longer track the signal. In this case the model degerserate
-30r into a nearly constant frequency sinusoid with mean frequen
_s0l somewhere in the range of the frequency values of the target
oy ! sinusoid.
% -Sor I From the results we conclude that the regularized adap-
L% -60t / tive frequency estimation with piecewise polynomial phase
= I Dol trajectories allows to adjgst the properties of the trag'ley:t_
! —<ope oy 0=0) model such_that Iovy variance .of_ the frequency gstlmatlon
-80 . curvature 0n|§/ (*,=0) can be achieved without restricting 'ghe polynomial order.
90 + curvature and slope The examples demonstrate that a wide range of common
q ~_ std. additive frequency laws can be handled by means of adapting the
00 Ty, 0 : 2 smoothness constraints for different orders of derivatidde
log10(A) inherent smoothness constraints of the polynomial model di

Fig. 3. Frequency error as a function of the regularizatiarameters for the not 'erdL_jce a S|gn|f|c§nt b'?‘S in any of the Case_s that have
cases: slope onlgAs = A, A3 = 0), curvature only(As = A, A2 = 0), and been studied. For the sinusoidal FM the polynomial order of
both (A2 = A3 = X). Target is a sinusoid with constant (top), linear (centefhe model should probably be increased to be able to edtablis

and sinusoidal (bottom) frequency law in white Gaussianen¢®&\NR=0dB) . . .
The error obtained with a STFT based analysis algorithm en@ramer Rao higher order sr_noothne_ss Constralnts which would allow us to
reduce the variance with less bias.

bound for frequency estimation are given for reference.

VII. M ODELING SINUSOIDAL ATTACK TRANSIENTS

practical experiments the frequency estimation error come
rather close to this limit and saturates for~ 10° at about ~ The representation of attack transients of resolved sidsso
—135dB. is straightforward if rapid changes of the sinusoidal paam

In the center of fig. 3 the frequency error for tracking of gers are allowed. The analysis of fast changing parameters,
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transient representation with additive models the estimation of the mean time, the center of gravity of the
‘ ‘ ‘ ‘ ‘ ‘ signal energy, of the signal related to the current speptak
[18]. For stationary signal components the time reassigiime
operator will be0 such that sinusoidal parameters will be
assigned to the frame center. For attack transients thegarger
peaks in the STFT will initially be reassigned to the far tigh
end of the analysis window and the reassignment offset will
decrease with the window moving over the attack. In the early
stage of an attack the analysis window does hardly cover the
sinusoid such that the estimated parameters will suffenfro
reduced frequency resolution and can be simply discarded.
—step . . .
adap Because later frames will provide better estimates for #mees
---adapcut || attack no information is actually lost [21]. Using paramete
—o—std. _ reassignment for the representation of attack transiehts o
—*— std+reassign . . . i . .
‘ ‘ ‘ ‘ ‘ ‘ ‘ sinusoidal signals significantly increases the maximunpesio
2000 2500 3000 3?\100 4000 4500 5000 of the amplitude trajectory which results in a perceptuadlyy
convincing attack representation. The drawback is, howeve
Fig. 4. Amplitude parameter trajectories obtained with déffe additive that the center of gravity of the signal energy has a sysiemat

models (standard, reassigned, adaptive model with and witlewnoval of — qffset compared to the real amplitude trajectory, and foeee
pre-oscillations) for modeling a sinusoid with a step fumctas amplitude

trajectory. To facilitate comparison only the amplitude drapries are shown. _the price that _has _tO be payed for incr_eased perceptuamuali
is a systematical increase of the residual energy of the time

reassigned model.

however, poses special problems for the parameter estimati A comparison of the amplitude trajectories obtained with
algorithm because the high time resolution that is necgsséine standard additive model with and without reassignment
to follow quickly changing parameters will compromise theand the adaptive model is shown in fig. 4. The target sinusoid
frequency resolution. Due to the inherent conflict betwedras an attack transient of the form of a simple step function
time and frequency resolution it is common practice to usgith exponential decay. The model and analysis parameters
noise components to recreate the perceived attack [7]. Téme the same that have been used in the last section. The
characteristics of spectrally shaped noise, however, alg oamplitude trajectory obtained with the standard additivelet
suitable if the number of sinusoids that form the attack is maximally smooth with insufficient slope and starts nearl
rather large, which is not the case for example for stringadir b half a window before the step function. The amplitude tra-
sounds. Up to now, only few alternative approaches have bgeotory of the reassigned model has increased slope but lies
put forward to improve the representation of transientsnin @ompletely within the target amplitude trajectory suchttha
additive model. In the following some of the recent propssathe residual compared to the standard model is increased
will be discussed and will be compared with the represestatiby 2.5dB. The amplitude trajectory of the adaptive model
obtained with the adaptive model. A simple trick is suggestachieves a slope that is similar to the one obtained with
that considerably improves the transient representatidtheo reassignment, however, at the same time reduces the residua
proposed model. energy. The reduction of the residual energy depends on the

A recent approach to improve transient representation cqosition of the transient relative to the segment boundaarel
sists of extending the standard sinusoids plus noise madelfbr the current example ranges from1.54dB to —3.65dB
means of a component that is especially dedicated to regresmompared to the standard additive model. The figure shows
transients. In the sinusoidal model proposed in [19], [2@n average situation achieving an reduction of the residual
transients are directly represented by means of their igpecerror by2.3dB. The figure also demonstrates the effect of the
The advantage of the spectral representation of transientdransient detection which delays the initialization of thew
the high quality that will be obtained for simple re-syntises sinusoid until it is sufficiently covering the newly initiaéd
and the fact that the model can be applied to represent naisedel sinusoid. Note the initial negative oscillation ofth
transients as well. Because the transient representaties damplitude trajectory of the adaptive model, which prepares
not provide sinusoidal parameters, however, it is difficolt the model such that it eventually achieves a high slope. If
compare it with the adaptive method such that it will not bthe adaptive model would be restricted to positive ampéitud
discussed further. values it would produce a trajectory similar to that of the

The second approach to improve transient representatiorstandard model.
a sinusoidal model is based on the relocation of the additiveMaking further use of the knowledge that the sinusoid just
parameters using the reassignment operator [21]. The resiswted a simple trick can be applied to partly suppressre p
signment operator has originally been developed to inereasscillations after the parameters have been optimizedtii®ja
the readability of the signal spectrogram [22]. It uses theith the amplitude trajectory that results from the optiatian
phase spectrum to estimate the time frequency location wé construct at mogio — 1) further amplitude trajectories by
the signal component that is present at the time frequermtyeans of removing initial parts that extend up to the first,
location of the STFT. Time reassignment is closely related second and third zero crossing. From this set of at naost
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different amplitude trajectories (including the origirtade) we Modeling a Piano Attack
select the one that achieves minimum error for the train
segment. As is shown in fig. 4 the resulting trajectory he
its pre-oscillation removed without affecting the slopetioé

attack transient. The total reduction of the residual ener
still varies with the transient position and now ranges fror —5
—1.74dB to —4.0dB. Due to the fact that this treatment is

only applied for the initial part of a sinusoid and that it wil 0.5
only remove parts of the sinusoid that increase the modet er 0
there is no risk that parts of a real sinusoidal component m_g 5
be removed. A

(&2l

A —target signal

—residual of standard model

O A
Gl b et Ll

—residual of adaptive model |

VIII. M ODELING REAL WORLD SIGNALS 05 .
OWM‘WWW e
The algorithm described so far has been applied to ma_g 5|

real world sound data files and has proven to be a favoral A ‘ ‘ ‘ ‘
choice for signal representation when small model errohést 0 01 0.2 0.3 0.4 1/5
main objective. As an example for a practical application we
mention the development of a virtual replacement of a refdp- 5. Comparing_the error of a standard_ additi_ve model withabaptive
acoustic pipe organ by means of an aditive sampler [23] e, ¥hen mOdeng a ransient of s pano sgnal Note thakscare
has been carried out at our institute. To demonstrate tleat th
algorithm works reliably with real world sound signals welwi
discuss the results obtained for two sounds from a database
that had been collected to compare additive signal modé@sidual energy of the complete segment shown-)dB
using the Sound Description Interchange Format (SDIF).[24]elow the original signal for the standard additive aldwrit
The two sounds have been selected to represent the f##@nter) and—25.6dB for the adaptive model (bottom). The
main problems for additive modeling that have been diseciss&duction of the residual error that is achieved by the adapt
in the current article: transients and nonstationary feegy Model for the transient part in the firstoOms is 6.4dB
trajectories. The transient sound example is a low pitchgiaWhile in the remaining part it still achieves6dB reduction.
note Wlth fundamenta' frequency @BHZ It can be found The reduction in the Stationary part is due to the fact that
at [25] under the nameiano.aiff. The sinusoidal part of the the Hanning window used for the STFT based model has
signal is difficult to represent with additive models duete t less sidelobe rejection and that all sinusoidal parametess
fact, that a long window is needed to resolve the sinusoid@stimated in a single analysis step which increases thefdnas
However, to represent the attack the window should be shdfteé multi-component signal. Note that, despite the in@eas
The example concerned with tracking of frequency evoluigon Precision, the re-synthesized signals are perceptualighha
a singing voice signal that contains considerable pitcingha. distinguishable. The residual signal, however, is audéalgily
This sound is accessible from the above mentioned databgiinguishable. First, because the attack part of theduesi
under the namehafqat-derbari.aiff of the standard estimator has a slight tonal quality andreco
The initial segment of the piano signal and the residuBecause its stationary part contains significant beating du
signals of the sinusoidal model using an inharmonic stahddf€ fact that some low amplitude sinusoids have not been
STFT based parameter estimator and the adaptive method&ticiently resolved.
depicted in fig. 5. For both additive models we allow the same The second example, shown in fig. 6, demonstrates the
maximum number of active sinusoids per time instant anchcking of time varying frequency trajectories in a singin
have optimized the meta parameters such that they achigweice signal. The sinusoidal frequency trajectories thateh
minimum error. For the STFT based analysis procedure usibgen found are laid over the spectrogram. In the spectro-
a Hanning window the optimal window size (s041s while gram darker gray represents lower amplitude and the line
for the adaptive model with polynomial order= 4 a segment thickness roughly represents amplitude. The long sinasoid
length of M = 0.0147s has been selected. Based on theajectories that represent stable sinusoids in the saigeal
findings described in the present article this value coulehaare easily distinguished from the short ones that are due to
been selected a priori because for all the valuesibfthat noise. To improve the tracking of the nonstationary fregqyen
have been tried the optimum one has the first zero of the Bajectories the regularization has been slightly reduteed
spline spectrum located closest to the fundamental frexyuen\, = 0.07, A3 = 0.2. At the bottom of fig. 6 the original signal
such that the bias introduced by the neighboring sinusoills wand the residuals of an harmonic additive model with STFT
be minimal. Knowing that the sinusoids have nearly constaphsed analysis and the adaptive model are presented. The
frequency the regularization has been seAfo= Ay = 0.25. analysis window that provides best results with the harmoni
The optimal window length of the standard model is shortemodel is a Blackman window of lengttéms. For the adaptive
however, in spectral domain the resulting mainlobe of thmodel best results have been obtained with a segment size of
Hanning window and the B-spline are quite similar. Th&.7ms. For both models a maximum of 80 sinusoids is allowed
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Singing voice model and it has been shown that to achieve high efficiency the
representation selected for the phase trajectory should be
chosen as a function of the amplitude of the sinusoid under
adaptation. We have proposed a new approach to handle the
bias/variance tradeoff of piecewise polynomial phasettayy
models by means of regularization and have shown that the
proposed regularization scheme allows to tune the model
characteristics such that a variety of real world situation
can be handled. It has been demonstrated that compared to
STFT based parameter estimation the adaptive model ashieve
considerably improved representation of the transient giar
sinusoids and considerably lower frequency estimatioargrr
when tracking nonstationary sinusoids in noise.

Due to space constraints the current article has been dmite
to deal with resolved sinusoids. As has been show in [26]
the regularized adaptive model has favorable properties fo
Tis modeling limited numbers of unresolved sinusoids, too. The

investigation into noise components, however, requirethéu

Freg/kHz

015 02 025 03 035 04

original and residual signals discussion and will be the subject of an forthcoming article
5[ — targetsignal ‘ ‘ _ An interesting extension of the method would be the adap-
M tive estimation of the parameters of quasi harmonic sets of
0 “ sinusoids. If the complete, quasiharmonic set of sinusoids
5} of a single instrument would be adapted simultaneously, ad-

vanced and physically motivated regularization of theeddht
A? ' residual of standard model parameter trajectories with respect to their deviatiormfro
0

the harmonic model could be established. This could lead
st *,sw . MWWWWWWWMW% to significant improvements for the tracking of high order
partials of harmonic sounds. Moreover, in combination with

~ ‘ ‘ ‘ ‘ ‘ ‘ recently improved algorithms for the estimation of fundame
A% —— - ‘ ‘ ‘ tal frequencies from polyphonic signals, this researchdiion
residual of adaptive model will establish a new approach to separation of quasiharenoni

%MMWMMWWMWMWWWWWWWMMW sources from polyphonic signals similar to the Bayesian ap-

proach proposed in [11].

o
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APPENDIX n
To determine the frequency resolution of the adaptive algo-  ~ — > Ag, Y A(n)b;(n)bi(n) cos®(®(n)))
rithm we study the impact of a stationary perturbing cosine k n 27)

on the optimal model parameters for a single nonstationary -1 2
. . ) S R— A A b;(n)by
sinusoidal component. Hence, the signal to be studied is 2 Zk: Pk Z (n)7bi(n)bk ()

S(n) = A(n) cos(®(n)) + A cos(wgn). (22) Vie{l,2,...,.M},

The parameter trajectories of the target sinusdich) and that approximately describe the relations between the per-
®(n) are assumed to match the trajectory model accordingttobing signal and the changes in the amplitude and phase
eq. (3) such that the trajectories can be represented withparameter vectors denoted As;, and Ag, . The coefficient



14

matricesC4, and Cy that are related to the linear amplitude column of inverted coefficient matrix
and phase equations in eq. (26) and eq. (27) have ba 1f ‘ ‘ ‘ ‘ ‘
diagonal form with the coefficients;, given by the crosscor-
relation between the B-splinég(n) and b, (n). For Cg this o
correlation is additionally weighted by means of the anplé Ci
trajectory of the target sinusoid. Accordingly, only tfle—1) _;| i
inner diagonals are non zero and are monotonically decrgas
with the distance from the main diagonal. The solution ¢ 1
these equations can be obtained by means of inversion
the coefficient matrices. Using notatigrh 4, },; to represent a
column vector with elementa 4, we obtain 1t |

—— spline order 2 |

c. ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
{Aa}i= CglA{Z cos(wsn)bg(n) cos(®(n))}r  (28) g ; ; ; ; ; ;

—— spline order 4 |

{Ag,}i = C;lA{Z cos(wsn)bg(n)A(n) sin(®(n))} .
’ 29)

For every parameter we may describe the impact of ;0 g 6 -4 -2 0 2 4 648 10
perturbation by means of a superposition of injected errors

E,, respectivelyEg, given by the three respectively fourrig. 7. Approximate coefficients;;, of the column vectok of the inverted
term products coefficient matrix for different polynomial orders and matrixesN — oco.

The coefficients are maximal on the main diagonal at fomith £ — 7 = 0.

E4, = Z cos(wsn )by (n) cos(P(n)) (30)

Es, = Zcos(wsn)bk(n)A(n) sin(®(n)). (31) B-spline c_oefficien_ti and thg I_ocation of the injec_t(.ad error
" k. According to fig. 7 the injected error at positidn is

These equations can be interpreted as the real part of ?n%nmcant for the B-spline coefficients in a neighborhodeto

i
. . . . t+ ts. Note that th It lated to th d
Fourier transform of a signal derived from the target S'"mso;asertarf)?r?mgr?esr (r)m; d gmilaerlretsrlljesv:/igneth eo freeusgr:(e:a
that is evaluated at frequeney, and uses the B-spling, (n) P 9 9y y q Y

as analysis window. In eq. (30) the transformation is apjie distance i9). This is the case when modeling transients, where
ySIS | W. N €3. . ttle perturbing signal is part of the sinusoid to be modeled,
the target sinusoid having the amplitude set to be constan owever, due to model insufficiencies cannot be expressed
In eq. (31) the transformation is applied to the target ©rus __ .., .~ .’
after shifting its phase b$. Becausé is used as analysis within the model.
: ung 1ts p g.' ’“(n? . Y Due to the linear approximation the results obtained above
window its spectrum defines how the injected error depengF,

. . . valid only in case of small deviations from the optimal
on the frequency distance between the perturbing signal anéa y P

. . . arameter vector. For most situations, however, the digslo
the target sinusoid. We may conclude that the B-spline spe . . ;
, . . . of the B-spline are sufficiently small such that the impac# of
define the frequency resolution of the adaptive algorithm.

L . : L i ignal ide the f f th al
The weighting factors for superimposing the injected eyroperturbmg signa out_5|de the frequency fange o the mhnlo
. ) can be described using the above relations.

to obtain the parameter change,, andAg, are given by the
coefficients in the-th row of the inverted coefficient matrices.
Due to the effects at the borders of the parameter trajestori
and the fact that the target amplitude affects the coefficent
matrices it is difficult to give general analytic expressidar
these coefficients. Some insight can be obtained, however,
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orders are depicted in fig. 7. As expected the impact of iagbct

error decreases with the distance between the positioneof th



