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Abstract

In this work, we investigate spectral envelope estimation for harmonic signals. We address the issue of model order selection and pro-
pose to make use of the fact that the spectral envelope is sampled by means of the harmonic structure of the signal in order to derive
upper bounds for the estimator order. An experimental study is performed using synthetic test signals with various fundamental frequen-
cies and different model structures to evaluate the performance of the envelope models. Experimental results confirm the relation between
optimal model order and fundamental frequency.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Estimation of the spectral envelope, which is a smooth
function passing through the prominent peaks of the spec-
trum, is an important task in signal processing applications.
The spectral envelope is generally considered as one of the
determining factors for the timbre of a sound. In terms of
the well known source-filter model, which models sound
creation by means of a white excitation signal passing
through a filter, the spectral envelope is the transfer func-
tion of the filter. Accordingly, the task consists in estimating
the resonator filter from the signal. Spectral envelope esti-
mation methods can be used for applications as signal char-
acterization, classification and modification. While signal
characterization and classification applications generally

do not require a very precise estimation of the spectral enve-
lope, the quality of voice or timbre conversion systems
depends on the quality of the envelope estimate.

In the case of white noise excitation signals there are var-
ious straightforward estimation techniques (Kay, 1988). If,
however, the excitation signal is periodic (as for pitched
instruments or voiced speech), the estimation is difficult
due to the fact that the distinction between the spectral
envelope and the excitation signal is ambiguous. In cases
like these the peaks defining the spectral envelope are the
harmonics of the fundamental frequency. Therefore, the
spectral envelope should be a transfer function that, if
inverted, renders the sequence of spectral peaks of the resid-
ual signal as flat as possible, without including the harmonic
structure of the excitation signal.

Some problems that hinder the estimation are the proper
selection of the filter model (AR, MA, or ARMA) and the
proper selection of the model order. The estimation of AR
or all-pole models by means of linear prediction (LP), that
was described in (Makhoul, 1975), is a technique that is
still used quite often for the estimation and parametric
representation of the spectral envelope of speech signals.
LP modeling can be considered a state of the art proce-
dure if the excitation signal is white noise. For harmonic
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excitation signals, however, the LP technique is known to
be biased. For these excitation signals the discrete all-pole
(DAP) technique that was presented in (El-Jaroudi and
Makhoul, 1991) can be used to considerably reduce the
bias. Note that compared to the LP method the computa-
tional costs and the algorithmic complexity of the DAP
algorithm are significantly increased. For the order selec-
tion problem there exists only a physically motivated rea-
soning (O’Shaughnessy, 1987). The fact that the filter is
observed after having been sampled by the harmonic struc-
ture has not yet been taken into account.

ARMA envelope models are most easily obtained
through cepstrum based techniques. The cepstrum is a
DFT representation of the log amplitude spectrum and it
can be shown that ARMA transfer functions can be repre-
sented by means of the cepstrum (Smith, 2005). There are
different techniques for cepstrum based envelope estima-
tion. In (Imai and Abe, 1979) an attractive cepstrum-based
spectral envelope estimator, named true-envelope (TE), is
presented. This iterative technique allows efficient estima-
tion of the spectral envelope (Roebel and Rodet, 2005)
without the shortcomings of the discrete cepstrum (Cappé
and Moulines, 1996; Galas and Rodet, 1990). The resulting
estimation can be interpreted as a band limited interpola-
tion of the major spectral peaks.

In the following article an experimental comparative
study of envelope estimation techniques is presented. The
goal of this investigation is to derive a simple and effective
strategy allowing us to select an appropriate model order,
and to investigate the performance of different models with
respect to the filter properties. For experimental investiga-
tion the LP, DAP and TE techniques will be used. The
experimental setup is especially relevant for tasks that
require the estimation of the residual or excitation signal
of pitched signals, such as voice morphing or timbre mod-
ification. For these tasks, in contrast to formant detection,
a uniform approximation of the envelope is generally
advantageous because an error in the excitation signal,
whether due to a formant or an anti-formant, may become
perceptually important once the envelope has been modi-
fied. With respect to the order selection problem we will
demonstrate that for the DAP and TE estimators, a rea-
sonable model order can generally be derived from the fun-
damental frequency of the excitation signal.

The article is organized as follows. The cepstrum based
True-Envelope algorithm is introduced in Section 2. LP
and DAP all-pole based models are described in Section
3. In Section 4, we present the experimental framework
and we describe the results in Section 5. Section 6 summa-
rizes the article.

2. Efficient cepstrum-based spectral envelope estimation

2.1. The True-Envelope estimator

There are a number of approaches for estimating the
spectral envelope by means of cepstral smoothing. The dis-

crete cepstrum is the most well know, but, is rather
demanding computationally. It requires a pre-selection of
the spectral peaks. The True-Envelope (TE) estimator was
originally proposed in (Imai and Abe, 1979). Recently, a
procedure has been proposed that allows significant reduc-
tion of computational costs to a level comparable with the
Levinson recursion such that real time processing can be
achieved (Roebel and Rodet, 2005). Note however, that
reduction of the computational cost comes with slightly
reduced precision. Therefore, we will not use the real time
version of the TE estimator for the following experiments.
The true-envelope estimator will be used as representative
of the cepstrum based spectral estimators.

TE estimation is based on cepstral smoothing of the
amplitude spectrum. Let X(xk) be the K-point DFT of
the signal frame x(n) and Ci(xk) the cepstrally smoothed
spectrum at iteration i. The algorithm then iteratively
updates the smoothed input spectrum Ai(xk) with the max-
imum of the original spectrum and the current cepstral
representation

AiðxkÞ ¼ maxðlogðjX ðxkÞjÞ;Ci�1ðxkÞÞ ð1Þ
and applies the cepstral smoothing to Ai(xk) to obtain
Ci(xk). The procedure is initialized setting A0(xk) =
log(jX(xk)j) and starting the cepstral smoothing to obtain
C0(xk). As depicted in Fig. 1 the estimated envelope grows
steadily. The algorithm stops if for all xk the relation
Ai(xk) < Ci(xk) + h is true with h being a user supplied
threshold. For the current experiments h = 0.01 dB was
used. Given the fact that the cepstral order is limited the
TE estimator creates a band limited function that passes
through the prominent spectral peaks. The peaks that are
considered prominent are automatically selected according
to the cepstral order. The explicit peak selection that is nec-
essary for the DAP estimator as well as for the discrete cep-
strum, is not required.
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Fig. 1. True-Envelope estimator iteratively approaching the ARMA test
spectrum (model order O = 25, sample rate Fs = 44,100 Hz, fundamental
period P0 = Fs/F0 = 50).
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2.2. Order selection

A major advantage of cepstral envelope estimation tech-
niques is that a reasonable estimate of the optimal cepstral
order can be provided. If the observed signal has a
fundamental frequency F0, the harmonic excitation spec-
trum samples the filter transfer function with a sample per-
iod given by F0. Therefore, one may deduce that the
information in the original filter that exceeds the related
Nyquist bandlimit in the cepstral domain is lost. Assuming
a sample rate of Fs the related Nyquist frequency bin
number in the discrete cepstrum is Fs/(2F0). This fact
allows us to provide a simple way of selecting a nearly opti-
mal cepstral order given that the maximum frequency
difference between two spectral peaks that carry envelope
information is known. If the difference between those peaks
is DF then the cepstral order used in the TE estimator
should be

bOTE ¼ F s=ð2DF Þ ¼ aTEF s=DF ; aTE ¼ 0:5: ð2Þ

Due to the fact that sinusoidal peaks are not ideal impulses,
the sampling of the spectral envelope performed by the
excitation signal will not be ideal. Moreover, for very
smooth transfer functions a lower order may already be
sufficient. Therefore, the optimal order (the order that pro-
vides an envelope estimate with minimum error) will gener-
ally not only depend on F0 but also on the specific
properties of the envelope spectrum. Nevertheless, as will
be shown in the experimental section, the order selection
according to (2) is appropriate for a wide range of situa-
tions, and the resulting estimation error is generally rather
close to the optimum.

2.3. Pre-smoothed True-Envelope estimation

Initial experiments with the TE estimator revealed a
problem with the order selection described above, which
is due to the fact that in real world signals the spectral
envelope is not sampled regularly. The main problem here
is the fact that the spectral peak at 0 Hz and possibly Fs/2 is
generally missing so that for harmonic excitation with fun-
damental frequency F0 the maximal frequency difference
between the supporting peaks will be DF = 2F0. To be
able to increase the model order we propose a two step
estimation. First a TE model with order O = Fs/(4F0) is
estimated. From the estimated envelope we derive an esti-
mate of the appropriate sinusoidal amplitude at positions
0 Hz and Fs/2. For both positions we create artificial
spectral peaks with the estimated amplitude whenever the
original amplitude is smaller than the estimated ampli-
tude. In the second step, due to the artificial spectral peaks,
DF is reduced to F0. Therefore, according to (2), we may
select bOTE ¼ aTEF s=F 0. As a result, all available details
in the envelope spectrum can be resolved. The two step
estimation procedure will be denoted as the TE method
below.

3. All-pole based modeling

3.1. The baseline linear prediction model (LP)

The main reason for using linear prediction for speech
envelopes modeling is that the vocal tract filter can be
approximated by an all-pole model (Markel and Gray,
1976). LP is well-adapted for modeling speech spectra,
and in particular the formants that characterize voiced
speech. The LP model is obtained by means of minimiza-
tion of the residual signal of a MA linear predictor, or
equivalently, by means of maximization of the flatness of
the residual spectrum (Kay, 1988).

Assume X(xk) to be the K-point DFT of the signal
frame x(n). The coefficients of the LP all-pole filter, ak

are the solutions of the linear equation

�
Xp

k¼1

RLPði� kÞak ¼ RLPðiÞ; 1 6 i 6 p; ð3Þ

where

RLPðiÞ ¼
1

K

XK

k¼0

jX ðxkÞj2ejxk i ð4Þ

is the autocorrelation sequence (acs) of the signal segment.
It can be shown that the first p samples of the autocorrela-
tion sequence of the filter impulse response will match the
corresponding samples of the acs of the signal.

It is well known that LP can be used to correctly esti-
mate the spectral envelope for white noise excitation sig-
nals as long as the order of the model is sufficiently large.
For harmonic excitation signals, the selection of the LP
model order is more critical because with increasing order
the LP model will not fit the envelope but the complete
spectrum (including the harmonic structure). The usual
approach to specifying the appropriate model order is
based solely on the physical properties of the filter transfer
function (O’Shaughnessy, 1987). While it is well known
that for increasing pitch the LP model has systematic
errors, no attempt was made to connect the model order
to the fundamental frequency.

3.2. Discrete all-pole modeling

If the excitation signal is periodic the LP model intro-
duces considerable bias into the estimation of the envelope
parameters. This is because the spectral envelope is sub-
sampled by the harmonics of the excitation signal. As a
result, the acs of the input signal is an aliased version of
the acs of the impulse response of the spectral envelope fil-
ter. As explained in the previous section the LP model
matches the filter acs with the acs of the signal. Therefore,
the LP filter estimated from a periodic signal is biased
whenever the acs of the envelope filter is not time limited.

For harmonic signals, this systematic error appears in
the fitted envelope as a bias of the envelope peaks towards
the pitch harmonics. It is easy to see that the aliasing effect
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will increase with increasing fundamental frequency of the
excitation signal as well as with decreasing smoothness of
the spectral envelope.

The aim of the discrete all-pole model (DAP) (El-Jaro-
udi and Makhoul, 1991) is to solve the aliasing problem
described above. The basic idea exploited with the DAP
model is to fit the all-pole model using only the finite set
of spectral locations that are related to the harmonic posi-
tions of the fundamental frequency. The objective function
used with the DAP model is a discrete version of the Itak-
ura-Saito error measure. If the observed and estimated
speech envelopes are denoted as S(x) and bSðxÞ respectively
and the frequencies of the harmonics are given by xm the
error measure is

EDAP ¼
X

m

SðxmÞbSðxmÞ
� log

SðxmÞbSðxmÞ

 !
� 1: ð5Þ

Note that the frequency positions xm are not required
to obey harmonic relations. Adaptive minimization of
EDAP yields the DAP estimate. As only the relevant spec-
tral positions of the input signal are used, the systematic
error of the DAP estimator is significantly lower than that
of the LP model. To obtain a unique solution, however, a
sufficient number of points must be used. As reported in
(El-Jaroudi and Makhoul, 1991) the number M of spectral
peaks in the frequency range between 0 and the Nyquist
frequency should exceed the model order O of the all-pole
model. Given the fact that for a harmonic signal with fun-
damental frequency F0 we get O < M = (Fs/2)/F0 the
model order O appears to be limited in a way similar to
that discussed for the TE method. Nevertheless, the
DAP model order is generally selected following the same
guidelines as for the LP model. In Fig. 2, we show an
example of LP and DAP estimation fitting the same spec-
trum used for the TE estimator example and equal model
order.

4. Experimental evaluation

In the following experiments, we try to establish rela-
tions between the envelope characteristics, the fundamental
frequency, the envelope model and the model order. To be
able to quantify the estimation error the test signals are
synthetic ARMA signals with stationary envelope and exci-
tation. In a real world situation a number of additional fac-
tors will affect the estimation and the estimation error will
therefore generally be much higher. However, results con-
cerning the systematic errors due to model type and order
are expected to remain valid.

4.1. Synthetic ARMA test signals

To prevent an excessively large number of control
parameters for the synthetic signals the ARMA filter enve-
lopes of these signals are limited to rather low order. The
transfer functions consist of two pairs of complex poles
and two pairs of complex zeros. Because the smoothness
of the spectral envelope is mostly related to the pole and
zero radii we select fixed angular locations of poles and
zeros. The first pole pair has angle ±p/6 and the second
±p/2. For the zeros the angles of ±2p/6 and ±4p/6 are
used. The set of radii used to form the pole rp and zero rz

locations is given by

r ¼ logð2:013þ k0:04Þ with k ¼ 0; 1; . . . ; 17: ð6Þ

The resulting radii cover the interval [0.7,0.99]. For a
sample rate of 44,100 kHz this represents 3 dB-bandwidths
in the range 132–5014 Hz. These values cover the range of
formant bandwidths that are common for the spectral
envelopes of speech and musical instruments. For all exper-
iments we use a Hanning window that covers exactly four
periods of the fundamental frequency of the excitation sig-
nal. To prevent systematic errors that may arise due to the
fact that the spectral bins do not sample harmonic peaks
exactly at their local maximum, we use a DFT size that is
a power of 2 at least eight times larger than the analysis
window.

To restrict the dimensionality of the problem a two-
dimensional grid of radii was used. The first dimension
controls the radius of the four poles while the second
dimension controls the radius of the zeros. The complete
two-dimensional grid allows us to study transfer functions
that are dominated by AR or MA filter characteristics, as
well as an important number of ARMA filters. In Fig. 3,
we show three limiting cases of special interest: ARMA
with maximum radii (rp = rz = 0.99), AR dominated
(rp = 0.99, rz = 0.7) and ARMA with minimal radii
(rp = rz = 0.7). The input signals for the analysis are con-
structed by means of superposition of all the harmonics
of a given fundamental frequency (F0) that are below half
the sample rate Fs/2. The set of fundamental frequencies
that will be used covers the range Fs/500 < F0 < Fs/50.
No partial is added at 0 Hz or Fs/2. The harmonic excita-
tion signal is then filtered using the respective ARMA filter.
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Fig. 2. LP and DAP estimations of the ARMA test spectrum (model
order O = 25, sample rate Fs = 44,100 Hz, fundamental period P0 = 50).
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The fundamental frequencies to be used in the experiments
were selected such that the related fundamental periods
cover the range P0 = [50,500].

4.2. Evaluation criterion

The LP, DAP and TE algorithms are used to obtain
estimates of the spectral envelope using a grid of orders
covering the range O = [5,Fs/F0] and using an order
increment of 5. Order values according to the proposed
selection criteria are also included. To evaluate the estima-
tion error we use the root mean square error of the log
amplitude:

EM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

K

XK�1

k¼0

ðlog jSðkÞj � log jbSðkÞjÞ2
vuut ; ð7Þ

where S(k) and bSðkÞ are the K-point DFT of the filter
transfer function and the estimated envelope, respectively.
Using only the magnitude spectrum could appear to be a
problem because phase values are not taken into account.
Note however that for minimum phase filters the phases
are unambiguously determined by the log amplitude spec-
trum. Therefore, the phase spectra would not add further
information. The error measure (7) appears especially
useful for algorithms that try to achieve timbre modifica-
tion by means of deconvolution of the spectral envelope,
because for these applications any error, whether it is
underestimation or overestimation of the envelope is
equally important. For applications that try to achieve
formant location, another error measure would be
preferable.

5. Experimental results

5.1. Order selection

In Figs. 4 and 5, two examples of the average error
according to (7) are displayed as a function of the param-
eter a, which represents the model order relative to the
number of samples contained in the fundamental period
P0 = Fs/F0 of the excitation signal. Two sets of transfer
functions are used to calculate the averages of the estima-
tion error. The first set contains all transfer functions
described above, and the second set fixes the zero radius
to the lowest value (rz = 0.7), such that only the subset of
transfer functions that is closest to an AR model is taken
into account.

The comparison of the results obtained in the various
experiments reveal that the error generally decreases with
increasing P0. This is related to the fact that with a larger
period more harmonics are used to sample the envelope,
which facilitates the estimation. It is interesting to note that
the TE estimator does saturate at a level of about 0.01 dB
which is achieved for P0 = 400. This is easy to understand
given the fact that the TE convergence criterion that we use
stops the iterative adaptation whenever the estimated enve-
lope has approached the observed spectral peaks to less
than 0.01 dB. If we locate the order that provides the min-
imum error we find that for both sets of transfer functions
the average optimal order of the TE estimator is always
close to the expected position aTE = 0.5 that represents
the Nyquist frequency limit. Note that if the number of
spectral peaks is large (P0 = 400) the optimal order corre-
sponds to an aTE that is slightly lower than 0.5. This can
be attributed to the fact that the model starts becoming
overly complex given the set of transfer functions that is
being used. Even in this case, however, the order selected
according to (2) achieves an error which remains close to
the optimal error.
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Fig. 3. Examples of the evaluation transfer functions. The solid line
corresponds to a transfer function with pole/zero positions with maximal
radii. The dashdotted line shows a pole dominated transfer function with
maximum radii for the poles and minimum radii for the zeros, and the
dashed line shows an ARMA transfer function with pole/zero positions
with minimum radii.
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Fig. 4. Average envelope estimation errors for ARMA and AR-domi-
nated transfer function sets as a function of a (P0 = 100).
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A similar behavior can be observed for the whole set of
ARMA envelopes and the DAP method. Here, however,
the optimal position aDAP = 0.4 is slightly below the theo-
retical limit. For the AR dominated subset of transfer
functions we find that the optimal DAP order is much
smaller. The strong dependency of the optimal DAP order
on the characteristics of the transfer function reveals a
problem with the DAP estimator. The experimental results
show that for orders that are close to the limit required
for a unique solution (a < 0.5) the objective function (5)
does not provide enough information to bind the AR
model, and therefore, the error begins increasing for
model orders well below a < 0.5. For the underdetermined
case (a P 0.5) DAP performs similarly to LP. This can be
understood as the LP solution is used to initialize the iter-
ative DAP procedure. We can conclude that for the under-
determined case the LP solution is already part of the
solution manifold of the objective function (5). While the
value of the optimal order of the DAP model depends
strongly on the characteristics of the filter transfer func-
tion we may nevertheless conclude that when no a priori
information about the system structure is available, which
is generally true for real world situations, the DAP order
should be selected using (2) with aDAP = 0.4. Note that a
particular disadvantage of the DAP estimator is the fact
that the estimated filter may be unstable (El-Jaroudi and
Makhoul, 1991).

When considering the LP model we find that the mini-
mum error for the complete set of filters is found for values
of a in the range [0.05, 0.25]. The lower order of the LP
method makes sense as the LP estimator uses the complete
spectrum to adapt its parameters such that a lower order
suffices in order to prevent adaptation to the harmonic
structure. Again due to the fact that the complete spectrum
affects the LP estimate, it appears questionable whether the
optimal value for a found in these experiments can be
generalized.

5.2. Order selection evaluation

So far the order selection criterion has been validated
using only two values of the fundamental frequency. In
Figs. 6 and 7, the experimentally obtained optimal orders
for the ARMA and AR-dominated set of transfer functions
and a large range of fundamental frequencies are compared
with the orders selected according to the proposal
described above. Figs. 8 and 9 compare the modeling error
for the same set of experiments and orders.

The results displayed in these figures show that the rela-
tions that have been discussed for the fundamental periods
P0 = 100 and P0 = 400 in the previous section are valid for
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Fig. 5. Average envelope estimation errors for ARMA and AR-domi-
nated transfer function sets as a function of a (P0 = 400).
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Fig. 6. Comparison of the experimental optimal order and the proposed
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order selection on the AR-dominated set.
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the complete range of fundamental frequencies. As a result
of the experiments described so far we conclude that the
model order for TE and DAP estimation should be selected
as a function of the fundamental frequency using aTE and
aDAP in (2) as long as no a priori information about the
underlying transfer function is available. For LP, no con-
clusive suggestion can be made.

5.3. Model selection

Having obtained a simple means to select proper orders
for at least the DAP and TE estimator we aim to investi-
gate the relation between the envelope characteristics and
the model that performed best.

Comparing the average estimation error of the different
estimators we find that LP always displays the worst
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Fig. 8. Average modeling error using experimental optimal order and the
proposed order selection (ARMA set).
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proposed order selection (AR-dominated set).
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Fig. 10. Best estimator for each individual transfer function and fundamental periods P0 = 100 (left, top), P0 = 200 (right, top), P0 = 300 (left, bottom),
and P0 = 400 (right, bottom) samples using the experimental optimal model orders. Black (DAP) and gray (TE) areas denote the model that performed
best in the experiments. LP (white) is never the best model.
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performance. TE performs better for the complete ARMA
set and is outperformed by DAP only for the AR dominated
set of transfer functions and only if the experimentally
derived optimal order is used. If no information about the
optimal order is available, DAP is only slightly better, even
for the case of AR dominated transfer functions.

In Fig. 10, we display the model that had the smallest
estimation error for four fundamental periods and for each
filter transfer function used in the experiment. The estima-
tors are color coded. Black represents DAP, gray TE, and
white LP. Note that for Fig. 10 the order selection scheme
was not used.

The figures indicate that the TE method is the best for
all fundamental periods in the majority of cases. DAP per-
forms better only if the pole radii are significantly larger
then the zero radii. The LP model never outperformed
the other methods. The advantage of DAP with respect
to AR models is especially prominent for small periods
(high F0). As was made clear in the previous section, the
advantage of DAP for AR dominated envelopes diminishes
when the optimal order cannot be established because the
characteristics of the target envelope are unknown.

6. Conclusions

The article has presented an experimental comparison
of envelope estimation techniques for pitched excitation
signals. The main goal of the investigation was to estab-
lish experimental evidences for a simple scheme that
derives a proper model order from the fundamental fre-
quency of the observed signal. A slight modification of
the true-envelope estimator was required to be able to
achieve optimal performance with the suggested order
selection scheme. The experiments indicate that for the
modified TE estimator, the Nyquist frequency is a proper
indicator for model order selection. Accordingly, the
appropriate order for the TE estimator (or related cepstral
estimation methods) is equal to 0.5 times the number of
samples per period of the fundamental frequency. In a
similar manner for the DAP estimator, the model order
should be limited to 0.4 times the number of samples
per period of the fundamental frequency. While it is gen-

erally true that the best model order depends not only on
the fundamental frequency but also on the model struc-
ture and the specific transfer function, the experimental
findings support the conclusion that an appropriate choice
can often be made only based upon the fundamental fre-
quency of the signal.

Direct comparison of the estimators demonstrated that
the LP model is clearly the worst estimator. A comparison
of DAP and TE estimators revealed that the choice of the
optimal estimator depends on the fundamental frequency
and the envelope characteristics. For arbitrary envelopes
the TE estimator seems to be the better choice.
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