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ABSTRACT
This article deals with the estimation of sinusoidal param-
eters for non stationary sinusoids. It will be shown that for
linear amplitude and frequency modulation only the fre-
quency modulation creates additional estimation bias for
the standard sinusoidal parameter estimator. Then a new
algorithm for frequency domain demodulation of spectral
peaks is proposed that can be used to obtain an approxi-
mate maximum likelihood estimate of the frequency slope,
and an estimate of the amplitude, phase and frequency pa-
rameter with significantly reduced bias. An experimental
evaluation compares the new estimation scheme with some
previously existing methods. It shows that significant bias
reduction is achieved for a large range of slopes and zero
padding factors. A real world example demonstrates the
benefits of the new method.
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1 Introduction

The sinusoidal signal model is widely used for signal anal-
ysis and/or signal transformation of speech and music sig-
nals [1, 2]. An important step for the creation of a sinu-
soidal model is the estimation of the sinusoidal parameters
(amplitude, frequency and phase) from the spectral peaks
of the Fourier transform. This estimation is straightforward
as long as the sinusoids are stationary. The log amplitude
and unwrapped phase of the maximum bin of the spectral
peak and its two neighbors are interpolated by means of a
quadratic polynomial and the height and frequency posi-
tion of the maximum of the polynomial provide amplitude
and frequency estimates. The phase is obtained from the
phase polynomial evaluated at the frequency position de-
termined in the previous step. This estimator is denoted as
quadratically interpolated FFT (QIFFT) estimator [3].

For non stationary sinusoids the parameter estimation
becomes more difficult. The QIFFT algorithm is severely
biased whenever the frequency is not constant. The term
bias refers to the systematic estimation error. It describes
the offset of the estimator that exists even if no measure-
ment noise is present. For the high order partials in natural
vibrato signals the estimation bias of the QIFFT estima-
tor accounts for a significant amount of residual energy. It
is the major reason for the perceived voiced energy in the

residual of vibrato signals. A number of algorithms with
low estimation bias for non stationary sinusoids have been
proposed. Some of these algorithms implement a maxi-
mum likelihood estimate (MLE) by means of a grid search
for the demodulator of the frequency rate that maximizes
the amplitude of the demodulated signal [4]. These algo-
rithms use time domain demodulation, and therefore they
cannot be applied if the signal contains more than a single
sinusoid. Algorithms for multi-component signals gener-
ally rely on the fact that the analysis window is approxi-
mately Gaussian such that a mathematical investigation be-
comes tractable [5, 6, 3]. The method presented in [3] is
special in that it tries to extend its range to other analysis
windows by means of a set of linear bias correction func-
tions. The resulting estimator is computationally very effi-
cient and achieves small bias for standard windows as long
as the zero padding factor is sufficiently large (≥ 3) and the
frequency chirp rate is relatively small.

In the following we present a bias correction scheme
for sinusoidal parameter estimation of non stationary sinu-
soids. First it will be shown that demodulation of the fre-
quency variation is the key to bias reduction when the si-
nusoid is non-stationary. We then propose to use frequency
domain demodulation to achieve an approximate MLE of
the frequency slope and the other partial parameters. The
main advantage of the frequency domain demodulation is
the fact that the method can be applied to multi-component
signals. After demodulation a standard QIFFT algorithm
can be used to find the fundamental parameters. Due to the
fact that the QIFFT estimator has small bias for constant
frequency sinusoids the resulting estimate is significantly
improved. A simple version of the algorithm has been pre-
sented in [7]. It has been shown that the demodulation can
be achieved by means of spectral deconvolution using only
the peak to be analyzed and a properly selected and scaled
demodulation kernel. In the original version the frequency
slope estimate was entirely handled by the frequency slope
estimator in [3].

The version to be presented here is a refined version
of the original demodulation algorithm. The enhancements
include a new procedure to improve the initial estimate of
the frequency slope reducing the remaining bias for large
frequency slopes. Furthermore, the constraint to use the
same analysis window for the signal spectrum and the de-
modulation kernel has been removed. Accordingly, it be-
comes possible to trade-off bias against noise sensitivity.
A computationally efficient version of the algorithm using



precomputed and linearly interpolated demodulation ker-
nels is presented.

The organization of the article is as follows. In sec-
tion 2 we will show how the bias of the standard estimators
is related to the frequency slope. In section3 we will de-
scribe the demodulation scheme and the approximate ML
frequency slope estimator. In section4 we present experi-
mental results and a comparison of the frequency demod-
ulator estimator with existing algorithms. In section5 we
conclude with an outlook on further improvements.

2 Estimation bias

The signal model that will be used here assumes a linear
evolution for amplitude and frequency trajectories such that
a complex discrete time sinusoid can be represented as

s(n) = (A + an) exp(i(φ + 2πωn + πDn2)). (1)

HereA is the mean amplitude of the signal anda is the
amplitude slope.φ is the phase of the sinusoid at timen =
0, ω is its mean frequency andD is the frequency slope.
Note, that all frequency values are normalized with respect
to the samplerate. The center of the analysis window is is
located at time0 such that an ideal estimator should provide
(A,ω, φ) as estimates for amplitude, frequency, and phase.

To start the investigation we summarize the sources
of bias that are known to exist for the standard QIFFT esti-
mator and discuss there implications in the current context.

First, there is the use of a second order model for in-
terpolating the spectral bins. While this is systematically
wrong for the present sinusoidal model, it does not have
any direct relation to the fact that the sinusoidal parameters
are varying. Because the QIFFT algorithm will be used
extensively, it is nevertheless important to reduce this type
of bias as far as possible. This can be achieved by means
of zero padding the analysis window or, as demonstrated
recently, by means of simple bias correction functions [8].

Second, there is the bias due to other sinusoidal com-
ponents. The technique that is generally used to reduce
this bias is windowing. The analysis window reduces the
sidelobes of the sinusoidal components such that the cross
component bias of distant sinusoidal components can be
effectively reduced. Note however, that the reduction of
the sidelobe amplitudes always is accompanied by an in-
creased mainlobe width. Accordingly windowing increases
the cross component bias for nearby components. In the
following we will assume that the sinusoidal components
are resolved such that the frequency distance between two
sinusoids is always larger than the width of the mainlobe
of both components. In this case the cross component bias
will stay nearly the same for stationary and non-stationary
components.

Third, there is the bias due to the non-stationary pa-
rameters. For the sinusoidal model in eq. (1) and a Gaus-
sian analysis window the bias has been analyzed mathemat-
ically in [6]. The result shows, that the QIFFT algorithm
suffers from additional bias due to parameter variation only

if the frequency slopeD 6= 0. In this case, the estimation of
all three basic parameters are biased and the bias increases
with the absolute value ofD.

To study the bias for arbitrary analysis windows we
split the sinusoidal model in eq. (1) into two parts, a si-
nusoid with constant amplitudeA and sinusoid with mean
amplitude 0 and amplitude slopea. Then we investigate the
properties of the spectra of the individual parts and use the
linearity of the Fourier transform to draw conclusions for
the sinusoidal spectrum. We assume the coordinate system
of the amplitude and phase spectra to be shifted such that
its frequency origin is located at the sinusoidal frequencyω.
ForD = 0 the amplitude of the spectra of both parts will be
an even function with the spectrum of the second part being
0 at the origin. The phase of the first part is even (constant
equal toφ within the mainlobe) and the phase of the sec-
ond part is odd (constant equal toφ with a phase jump ofπ
at the origin. Combining these facts we can conclude that
the sum of these spectra has even amplitude and as long as
the slope is sufficiently small such that the final spectrum
contains a mainlobe the QIFFT estimator provides results
that are biased only by the first two sources of bias men-
tioned above. We conclude that the time varying amplitude
by itself does not add any additional bias.

WhenD 6= 0 the phase of both parts are modified.
It is easy to verify that the constant amplitude component
will no longer have constant phase and that its phase will
be different fromφ at the origin. This creates a bias in
the phase estimator. Moreover, whena 6= 0 the amplitude
spectra keep their symmetry properties. The phase spectra
of both parts have a non constant but even symmetric shift
superimposed. By consequence the amplitude spectrum of
the complete signal will have its amplitude maximum been
shifted away from the origin. Accordingly, the QIFFT esti-
mator suffers from additional bias quite similar as has been
shown for the Gaussian window in [6].

3 Reducing the bias

In the previous section we saw that the source of the bias of
the QIFFT estimator is the frequency slope of the sinusoid.
A simple approach to estimate the parameters(A,φ, ω) of
a sinusoid related to a spectral peak requires two steps:

1. estimate the frequency slope,

2. demodulate the sinusoid and use the QIFFT estimator
to find the sinusoidal parameters.

Note, that this approach is in principle equivalent to the
MLE described in [4]. Because the demodulation is used
during the refinement of the frequency slope estimate we
will first discuss the frequency domain demodulation algo-
rithm. In a second step the frequency slope estimation is
described.



3.1 Demodulation

The main objective of the present algorithm is to provide a
means to demodulate the sinusoid using only the observed
part of the spectral peak. Initially, we assume we are given
a frequency slope estimatêD = D for a peak that is part of
a signal spectrum.

In time domain the demodulation can be achieved
simply by multiplication with a demodulator signal

y(n) = exp(−iπD̂n2). (2)

Multiplication of the signal in eq. (2) with the signal eq.
(1) will remove the frequency slope and keep all other pa-
rameters unchanged such that the QIFFT algorithm can be
applied. However, the signal we are interested in is observ-
able only via the part of its mainlobe that constitutes the
observed spectral peak.

The demodulation algorithm that uses the observed
peak to demodulate the sinusoid will be described in the
frequency domain using as sources the spectral peak to be
analyzed and the spectrum of the deconvolution signal. As-
sumeS(k) is theN -point DFT of the sinusoid to be ana-
lyzed andY (k) the DFT of the demodulator signal. All
DFT spectra are calculated such that the origin of the DFT
basis functions is in the center of the analysis window. The
signal analysis window isws(n) and the demodulator sig-
nal is windowed usingwy(n). To obtain the demodulated
sinusoid spectrumX(k) we would need to compute the cir-
cular convolution

X(k) = C
S(k) ~ Y (k)

N
, (3)

whereC is a normalization factor taking into account win-
dowing effects. The demodulator windowwd will be mul-
tiplied with the signal window such that the resulting spec-
trum contains as effective window the product window
wy(n)ws(n). Therefore, proper normalization would be
achieved by means of settingC = 1/

∑
n(wy(n)ws(n)).

Due to the fact that only part of the sinusoid spectrum
is available the normalization factor needs to be adapted.
Assume the peak under investigation is denoted byP (k).
P (k) is part of the spectrumS(k) and coversB bins. To
estimate the impact of the missing part we create a spectral
model of the observed sinusoid assuming the initial slope
estimate is correct

Pm(k) =
∑

n

ws(n) exp(iπD̂n2) exp(−2πj

N
kn), (4)

and select a subset̄Pm(k) of B bins around the center fre-
quencyk = 0. 1 The required normalization factor can
now be approximately estimated as

C =
1

maxk(|P̄m(k) ~ Y (k))
. (5)

Now we can replaceS(k) in eq. (3) byP (k) and demod-
ulate using the corrected normalization factorC. Some re-
marks are in order:

1If B is even the resulting model is not symmetric!

• The correction factor will be more precise (=lower
bias) for demodulator windows that concentrate more
energy in theB-bin wide band around frequency 0 of
the spectrum. This calls for low side lobes. The de-
modulator window, however, will as well be applied to
the signal. As a result the estimator sensitivity to noise
will increase. Accordingly the demodulator window
allows to trade-off noise sensitivity and bias. The ex-
perimental investigation suggests that the use of the
Hanning window as demodulator windowwd is a fa-
vorable choice for all analysis windowsws.

• It is preferable if the spectral peakP (k) that is used
for demodulation is delimited by amplitude values of
the same magnitude. Otherwise the additional asym-
metry that is due only due to cutting the peak out of
its complete spectrum will add to the estimation bias
that is due to the fact that only part of the peak is used
for demodulation. In our experiments we found sig-
nificant improvements for low and mid SNR if we en-
forced to cut the spectral peak such that left and right
amplitude border are at approximately the same level.

• For parameter estimation from demodulated peaks
with the QIFFT estimator it is essential to use the bias
correction functions proposed in [8] with correction
factors adapted to the effective windowwy(n)ws(n).

Our investigation shows, that the demodulation ker-
nels Y (k) can be pre-calculated for a fixed grid of fre-
quency slopes and then linearly interpolated to obtain an
approximate demodulation kernel for any given slope. If
the length of the analysis windows isM a frequency slope
grid with step size0.025/M2 is sufficient to produce esti-
mates that are nearly indistinguishable from the results pro-
duced with the non interpolated kernels. To use the com-
plete information that is available in the observed peak we
use deconvolution kernels of length2B+1 centered around
the maximum of the deconvolution spectrum.

3.2 Frequency slope estimation

As mentioned above the maximum likelihood (ML) fre-
quency slope estimator maximizes the amplitude of a de-
modulated peak [4]. Accordingly the maximization of the
amplitude of the demodulated peak using the demodulation
algorithm described above is a means to achieve an approx-
imate MLE.

To avoid the search of a large grid of frequency slopes
we propose to use an approximate initial estimate of the
frequency slopêD, and to use this slope estimate and two
slopes withD̂±Do to create three different demodulations
of the observed peak. From the amplitudes of these demod-
ulated peaks a 2nd order polynomial model of the relation
between frequency slope and demodulated amplitude can
be derived. The maximum of this polynomial is expected
to provide a refined estimate of the frequency slope.

The open question we need to address is: how do we
get an approximate estimate of the frequency slope? Given
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Figure 1. Comparison of the estimation errors for the different parameter estimators using window sizeM = 1001 and sinusoids
with strong (a-e) and weak (f) amplitude and frequency slope parameters. DFT size isN = 4096 (a-d), andN = 1024 (e-f),
The CRB for constant amplitude polynomial phase signals is displayed as lower limit. Algorithms using a Gaussian/Hanning
window are distinguished by means of solid/dashed lines. See text form more details.

.

the highest order coefficientsαφ and αA of the QIFFT
polynomial for amplitude (A) and phase (φ) of the peak un-
der investigation the frequency slope estimate for a Gaus-
sian analysis window is [3, 9]

D̂ =
αφ

α2
φ + α2

A

. (6)

Note, the remarkable fact that the same estimator has been
obtained for exponential amplitude evolution in [3] and for
a first order approximation of the spectrum of a sinusoid
with linear amplitude evolution in [9]. The fact that the
amplitude evolution does have only a very small impact on
the frequency slope estimator leads us to suppose that that
eq. (6) will provide useful estimates for other windows than
the Gaussian window as well. The argument here is that
the signal that is obtained after the analysis window has
been applied can always be considered to be equivalently
generated by means of a Gaussian analysis window and a
sinusoid with appropriately modified amplitude evolution.
Because the desired frequency estimate does not change
with the amplitude evolution of the sinusoid and because
the estimator eq. (6) appears not to be sensitive to small
changes of the amplitude evolution of the sinusoid it will
be considered as approximate estimator for the frequency
slope for arbitrary analysis windows (see section 4).

The free parameter to select is the frequency slope

offset Do. In general a polynomial approximation im-
proves when the approximation range is decreased. This
would call for a smallDo. In the present case, how-
ever, the relation between demodulation slope and ampli-
tude of the demodulated peak is covered by measurement
noise (due to estimation errors of the amplitude of the de-
modulated peak, due to the partially observed sinusoidal
spectrum, and due to the sampling of the Fourier spec-
trum by the DFT). Selecting the slope offset from the range
Do = [0.1/M2, 1/M2] provides a good compromise be-
tween validity of the 2nd order model and reduction of the
impact of the measurement noise. For the examples in the
experimental section we usedDo = 0.3/M2. The refined
frequency slope estimate is then again used to demodulate
the observed peak. This final demodulation yields the com-
plete set of estimates for amplitude, frequency and phase.

The precision of the frequency slope estimate that is
obtained from the maximum of the polynomial is slightly,
but consistently improved if the polynomial model is not
constructed for the demodulated amplitudesÂi but for
Âi

√
Ci whereCi is the normalization factor from eq. (5).

Up to now a theoretical explanation of this experimental
finding has not yet been found. Using

√
C to calculate

the demodulated amplitudes will obviously create biased
amplitude estimates. For the problem of slope estimation
it appears to improve the fit of the polynomial model and



therefore, it will be preferred. After the slope has been
determined from the maximum of the polynomial a re-
normalization can be performed if the amplitude of the sup-
porting points is required.

4 Experimental evaluation

The proposed parameter estimation procedure will be eval-
uated by means of comparing it to the bias correction esti-
mate proposed in [3] (denoted asAS) for which Gaussian
and Hanning analysis windows are used. Furthermore we
use the original version of the demodulation estimator ac-
cording to [7]. The results of this algorithm are denoted as
DE. The new version that includes the slope enhancement
and uses the Hanning window for all demodulation kernels
is denoted asDS.

The window type that is used will be indicated by
adding the letterG for Gaussian orH for Hanning orX
for both to the estimator shortcut. The Gaussian analysis
window is cut such that it has a length of8σ with σ be-
ing the standard deviation of the Gaussian. The results of
the QIFFT estimator are shown as reference as well as the
Cramer Rao bounds for second order polynomial phase es-
timation that have been presented in [10]. Note, however,
that these bounds have been found for constant amplitude
polynomial phase signals, such that they can only be used
to provide an approximate idea of the estimator efficiency.

In the experiments we use synthetic test signals with
a single sinusoid according to eq. (1) withA = 1, ω ran-
domly sampled from a uniform distribution over the fre-
quency range[0.2, 0.3], φ randomly chosen from a uniform
distribution between[−π, π], and varying slopesa andD.
The analysis window coversM = 1001 samples in all
cases.

In the first experiment displayed in fig. 1 (a.-d.) the
frequency slopeD is selected from a uniform distribution
over the interval[−4/M2, 4/M2]. Similarly the amplitude
slopea is sampled from a uniform distribution over the
range[−1/M, 1/M ]. The slope ranges are considered re-
alistic for real world signals. Note, that in harmonic signals
the frequency slope scales with the partial number such that
for high partials extreme slopes may arise. The FFT size
that has been used for this experiment isN = 4096.
Due to the equivalence between the frequency slope esti-
mators used in ASH and DEH as well as in ASG and DEG
these algorithms show no difference with respect to fre-
quency slope estimation in fig. 1 (a). As expected the Han-
ning window estimators have larger estimation bias which
is due to the fact that the slope estimation from eq. (6) is
used for a non Gaussian windows. The bias is increased
only by 15dB. For this setup the DSX estimators have by
far the lowest bias, however, are slightly more sensitive to
noise by about 2-3db.
As expected the amplitude estimate (b) of ASX is strongly
biased due to the fact that the amplitude trajectory model
does not match the signal. DEX and DSX are both simi-
lar and better then ASX. Note, that the improved frequency
slope estimate of DSX hardly improves the amplitude esti-

mate compared to DEX and that the increase of the noise
sensitivity of DEX and DSX is negligible. For frequency
d.) and phase estimation c.) DSX has by far the small-
est bias (compared to the other estimators using the same
analysis window). DEH and ASH perform approximately
similar for both for frequency and phase estimation . Given
that DEX and ASX estimators both use the same frequency
slope estimate this shows that the bias of these two esti-
mators is due to the error in the frequency slope estimate
which is improved by the refined slope estimate of DSX.
The increase of the noise sensitivity for the demodulation
algorithms is negligible for phase estimation. For the fre-
quency estimator the use of the Hanning window instead of
the analysis window is clearly diminishing the noise sensi-
tivity when the analysis window is Gaussian.
There are 2 more results provided to demonstrate the ro-
bustness of the method with respect to small zero padding.
In both examples FFT size is reduced to an zero padding
factor of approximately 1 (N = 1024). Due to space con-
straints only the frequency estimation will be discussed as
an example. Besides the reduced FFT size the experiment
in plot e.) is identical to the one in d.). While the esti-
mation bias is increased for all algorithms, DSX still has
the lowest bias. Noise sensitivity is hardly changed com-
pared to experiment d.). For the last experiment f.) the
slope ranges are reduced toa ∈ [−0.15/M, 0.15/M ], and
D ∈ [−0.5/M2, 0.5/M2]. These settings approximately
reflect the range of values that has been used to select the
correction parameters for the ASH estimator [3]. The small
zero padding factor, however, is a problem for this estima-
tor and the experiment confirms that for small zero padding
factors the ASH estimator cannot outperform the standard
QIFFT estimator. The DSX estimator again has the small-
est bias and is significantly better than the DEX estimator.

4.1 A real world example

To demonstrate that the advantages of the proposed esti-
mator are effective in real world situations we have im-
plemented the bias reduction methods in a complete ad-
ditive modeling system. The theoretical investigation has
been restricted to cover the case of resolved sinusoids,
only. For real world applications, however, the algorithm
has to prove that it will act gracefully when the underly-
ing model no longer holds (transients, unresolved sinusoids
due to reverberation, ...). The major problem we encoun-
tered is the enhanced frequency slope estimation described
in 3.2. When the underlying signal model is no longer valid
the relation between frequency slope and amplitude of the
demodulated peak becomes arbitrary and quite often the
method degenerates and tries to model transients or nearby
sinusoids by means of extreme slopes.
To prevent these situations we have adopted a simple strat-
egy. First we test whether the polynomial model of the rela-
tion between amplitude and slope indicates a maximum or a
minimum amplitude for the optimal slope. Second we limit
the slope offset that is allowed to happen to achieve the
maximum amplitude. If either the amplitude is a minimum
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Figure 2. Residual signal of a vibrato tenor singer us-
ing QIFFT estimator (top) and the enhanced demodulation
method DSH (bottom).

or the required slope offset is outside the user supplied
threshold (here±2Do) the DSH method can no longer be
applied and we use the DEH method as a fallback. Note,
that the implementation of the algorithm uses linear de-
modulation kernel interpolation as discussed in section 3.1.

We compare the estimators by means of the resid-
ual energy of an harmonic model of a tenor signal. The
signal contains strong vibrato, and therefore, the bias due
to the non-stationary parameters is significant. The har-
monic models contain 30 sinusoids and are estimated us-
ing a window size of 800 samples and FFT size 4096.
We calculated the variance of the residual signal for the
QIFFT, DEH, DSH and ASH methods. Due to the fact
that is different in the different frequency bands the re-
duction of the residual error changes with the frequency
band. Compared to the QIFFT estimator the reduction
of the residual energy is rather significant. For the com-
plete signal we get a reduction of4.19/4.72/5.04dB for
ASH/DEH/DSH respectively. For the band 2-4kHz the re-
ductions are7.32/8.4/9.33dB for ASH/DEH/DSH respec-
tively. The residual signals for the QIFFT and DSH estima-
tor are shown in figure fig. 2. The reduction of the residual
is clearly visible.

5 Conclusions

In the present paper we have shown that an efficient bias
reduction strategy for estimation of sinusoidal parameters
consists in a frequency slope estimation and demodulation
prior to application of the standard QIFFT estimator. The
procedure significantly reduces the bias of the standard es-
timator. It can work with arbitrary windows and does show
much less dependency on the zero padding factor than a
recently proposed algorithm. The computational costs are
significantly higher then those for the standard estimator

(≈ factor 10). However, they are sufficiently low such that
real time estimation of some tenth of sinusoids from au-
dio signals can be achieved. A real world example with a
vibrato signal has shown that compared to the standard es-
timator the enhanced slope demodulation estimator can in
some frequency bands achieve a residual error reduction of
up to9dB.
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