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ABSTRACT

In the following paper we investigate into the estimation of sinu-
soidal parameters for sinusoids with linear AM/FM modulation.
It will be shown that for linear amplitude and frequency modula-
tion only the frequency modulation creates additional estimation
bias for the standard sinusoidal parameter estimator. Then an en-
hanced algorithm for frequency domain demodulation of spectral
peaks is proposed that can be used to obtain an approximate max-
imum likelihood estimate of the frequency slope, and an estimate
of the amplitude, phase and frequency parameter with significantly
reduced bias. An experimental evaluation compares the new esti-
mation scheme with previously existing methods. It shows that
significant bias reduction is achieved for a large range of slopes
and zero padding factors. A real world example demonstrates that
the enhanced bias reduction algorithm can achieve a reduction of
the residual energy of up to 9dB.

1. INTRODUCTION

Additive (or sinusoidal) models are often used for the representa-
tion, analysis or transformation of music or speech signals [1, 2].
An important step that is necessary to obtain the sinusoidal model
consists of the estimation of the amplitude, frequency and phase
of the sinusoids from the peaks of the discrete Fourier transform.
The estimation is rather simple as long as the signal is stationary.
A standard method for this estimation is the quadratically interpo-
lated FFT (QIFFT) [3]. The QIFFT estimator uses the bin at the
maximum of each spectral peak together with its two neighbors to
establish a 2nd order polynomial model of the log amplitude and
unwrapped phase of the peak. The amplitude and frequency esti-
mates of the sinusoid that is related to the spectral peak are then
derived from the height and frequency position of the maximum of
the polynomial. The evaluation of the phase polynomial at the fre-
quency position provides the estimate of the phase of the sinusoid.

For non-stationary sinusoids the parameter estimation becomes
more difficult because the QIFFT algorithm is severely biased when-
ever the frequency is not constant. The term bias refers to the sys-
tematic estimation error. It describes the offset of the estimator
that exists even if no measurement noise is present. For the par-
tials in natural vibrato signals the estimation bias of the QIFFT
estimator accounts for a significant amount of residual energy. It
is the major reason for the perceived voiced energy in the residual
of vibrato signals. A number of algorithms with low estimation
bias for non stationary sinusoids have been proposed. Algorithms
that try to implement a MLE are generally assuming that the am-
plitude of the sinusoids are constant. As example we refer to an
algorithm that is based on signal demodulation employing an ini-
tial search over a grid of frequencies and frequency slopes and

a final fine-tuning of the parameters using an iterative maximiza-
tion of the amplitude of the demodulated signal [4]. Similar as
for multi-component signals with stationary sinusoids the MLE of
sinusoidal parameters for multi-component signals with FM mod-
ulated sinusoids is rather costly as in this case a highly nonlinear
and high dimensional cost function needs to be maximized [5].
Due to the computational savings and despite the fact that win-
dowing reduces the estimator efficiency the windowing technique
is generally preferred if the signal contains more than a single si-
nusoid. The algorithms that employ analysis windows for the pa-
rameter analysis of AM/FM modulated sinusoids generally rely
on the fact that the analysis window is approximately Gaussian
such that a mathematical investigation becomes tractable [6, 7, 3].
The method presented in [3] is special in that it tries to extend its
range to other analysis windows by means of a set of linear bias
correction functions. The resulting estimator is computationally
rather efficient and achieves small bias for standard windows as
long as the zero padding factor is sufficiently large (≥ 3) and the
frequency chirp rate is relatively small.

In the following paper we present a bias correction scheme for
sinusoidal parameter estimation of sinusoids with linear AM/FM
modulation. As a first step we provide a mathematical foundation
for the conjecture that linear amplitude modulation does not create
any additional bias for the QIFFT estimator. With respect to bias
reduction we may therefore ignore the amplitude modulation of
the signal. Then we extend an initial version of our bias reduction
method that has been proposed originally in [10]. The basic ideas
of the algorithm are similar to [4] in that the algorithm is based on
signal demodulation and maximization of the amplitude of the de-
modulated signal to find the sinusoidal parameters. In contrast to
[4] however, the algorithm allows the use of a analysis window and
does not use time domain demodulation. Therefore, it can be ap-
plied if the signal contains more than a single sinusoid. Moreover,
the initial 2-dimensional grid search of the algorithm presented in
[4] is avoided due to the fact that first, a simple and efficient ini-
tial estimate of the frequency slope estimate is used, and second,
the frequency and frequency slope estimation have been decou-
pled. After demodulating the frequency slope the standard QIFFT
estimator can be applied to obtain an estimate of the sinusoidal
parameters. Due to the fact that the QIFFT estimator has small
bias for constant frequency sinusoids the resulting estimate is sig-
nificantly improved. In [10] it has been shown that demodulation
can be achieved by means of spectral deconvolution using only the
peak to be analyzed and a properly selected and scaled demodu-
lation kernel. In the original version the frequency slope estimate
was entirely handled by the frequency slope estimator in [3].

The version to be presented here is a refined version of the
original demodulation algorithm. The enhancements include a
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new procedure to improve the initial estimate of the frequency
slope reducing the remaining bias for large frequency slopes. Fur-
thermore, the constraint to use the same analysis window for the
signal spectrum and the demodulation kernel has been removed.
Accordingly, it becomes possible to trade-off bias against noise
sensitivity. A computationally efficient version of the algorithm
using precomputed and linearly interpolated demodulation kernels
is presented. We describe an experimental comparison of the new
frequency slope estimator with the previous version and the ap-
proach presented recently in [3] and an experimental evaluation of
different bias reduction schemes for a real world vibrato signal.

The organization of the article is as follows. In section2 we
will show how the bias of the standard estimators is related to the
frequency slope. In section3 we will describe the demodulation
scheme and the improved frequency slope estimator. In section4
we present experimental results for the frequency slope estima-
tion algorithm as well as for the bias reduction scheme by means
of comparing the results of different algorithms. Furthermore we
compare different bias reduction methods by means of comparing
the residual energy of the sinusoidal model of a real world vibrato
signal. In section5 we conclude with an outlook on further im-
provements.

2. ESTIMATION BIAS

The signal model that will be used in the following assumes a lin-
ear evolution for amplitude and frequency trajectories. Accord-
ingly, a complex discrete time sinusoid can be represented as

s(n) = (A + an) exp(i(φ + 2πω0n + πDn2)). (1)

HereA is the mean amplitude of the signal anda is the amplitude
slope.φ is the phase of the sinusoid at timen = 0, ω0 is its mean
frequency andD is the frequency slope. Note, that all frequency
values are normalized with respect to the samplerate. The center
of the analysis window is is located at time0 such that an ideal
estimator should provide(A, ω0, φ) as estimates for amplitude,
frequency, and phase. The model equation (1) is necessarily time
limited due to the fact that we assumeA + an > 0 for all sample
positionsn that are used in a signal analysis.

As introduction into the problem we will summarize the sources
of bias that are known to exist for the standard QIFFT estimator
and discuss there implications in the context of parameter estima-
tion for linear AM/FM modulated sinusoids.

First, there is the use of a second order model for interpolating
the spectral bins. While this is systematically wrong for the present
sinusoidal model, it does not have any direct relation to the fact
that the sinusoidal parameters are varying. Because the QIFFT
algorithm will be used extensively, it is nevertheless important to
reduce this type of bias as far as possible. This can be achieved by
means of zero padding the analysis window or, as demonstrated
recently, by means of simple bias correction functions [8].

Second, there is the cross component bias that is due to other
sinusoidal components. The technique that is generally used to
reduce this bias is windowing. The analysis window reduces the
sidelobes of the sinusoidal components such that the cross com-
ponent bias of distant sinusoidal components can be effectively re-
duced. Note however, that the reduction of the sidelobe amplitudes
is always accompanied by an increased mainlobe width. There-
fore, the windowing technique will slightly increase the cross com-
ponent bias for nearby components. Moreover, due to the tapering

of the signal at the frame borders the noise sensitivity of the pa-
rameter estimation is slightly increased. In the following we will
assume that the sinusoidal components are resolved such that the
frequency distance between two sinusoids is always larger than
the width of the mainlobe of both components. In this case the
cross component bias will stay nearly the same for stationary and
non-stationary components such that the cross component bias will
only change marginally with the modulation of the sinusoids.

Third, there is the bias due to the non-stationary parameters.
For the sinusoidal model in equation (1) and a Gaussian analysis
window the bias has been analyzed mathematically in [7]. The
result shows, that the QIFFT algorithm suffers from additional bias
due to parameter variation only if the frequency slopeD 6= 0. In
this case, the estimation of all three basic parameters are biased
and the bias increases with the absolute value ofD.

To study the dependency of the estimation bias on the fre-
quency slope for arbitrary analysis windows we split the sinusoidal
model in equation (1) into two parts, a sinusoid with constant am-
plitudeA and sinusoid with mean amplitude 0 and amplitude slope
a. Then we investigate the properties of the spectra of the individ-
ual parts and use the linearity of the Fourier transform to draw
conclusions for the complete spectrum. We first write the DFT of
the signal equation (1) using analysis windowW (n) as follows

S(w) =

∞X
n=−∞

W (n)(A+an)ei(φ+2πω0n+πDn2)e−i2πωn. (2)

Assuming the analysis window to be even symmetric we can make
use of the symmetry relations and remove all parts of the sum in
equation (2) that are odd symmetric inn. As a result equation (2)
simplifies into

S(ω) = Sc(ω) + Sl(ω) with (3)

Sc(ω) = Aeiφ
∞X

n=−∞

W (n) cos(2π(ω0 − ω)n)eiπDn2
(4)

Sl(ω) = aeiφ
∞X

n=−∞

W (n)ni sin(2π(ω0 − ω)n)eiπDn2
.(5)

Here Sc represents the spectrum of the constant amplitude part
andSl represents the spectrum of the linear amplitude part of the
sinusoid.

For the discussion of equations (3-5) we assume the coordi-
nate system of the amplitude and phase spectra to be shifted using
the translationω′ = ω − ω0. Accordingly, the frequency origin
of ω′ is located at the sinusoidal frequencyω0. For D = 0 the
amplitude of the spectra of both parts will be even functions with
the spectrum of the second part being 0 at the origin.Sc(ω

′) and
Sl(ω

′) have a local maximum respectively minimum at the origin.
The phase ofSc(ω

′) is constant with valueφ within the mainlobe.
The phase ofSl(ω

′) is odd, it consists of two constant parts (with
valueφ ± π/2) with a phase jump ofπ right at the origin. The
sum ofSc(ω

′) andSl(ω
′) has even amplitude and odd phaseφ

with the valueAeiφ at the origin. Depending on the ratio ofA and
a the spectrum may present either a local maximum or minimum
at the origin. For all common analysis windows and the sinusoidal
model in equation (1) the resulting spectrum has a maximum. As
our first result we may conclude that forD = 0 the QIFFT estima-
tor provides results that are biased only by the first two sources of
bias mentioned above and that the time varying amplitudea 6= 0
does not add any additional bias.
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For D 6= 0 the factoreiπDn2
adds an even phase to the el-

ements of the sum. As a result the magnitude ofSc(ω
′) and

Sl(ω
′) does keep all the characteristics discussed above, notably

even symmetry and extreme value characteristics (maximum and
minimum). The (unwrapped) phase spectra however are no longer
(locally) constant, but both phase spectra have an additional even
phase function superimposed. The phase offset ofSc(ω

′) does not
vanish at the origin and by consequence the phase is biased already
for a = 0. Fora 6= 0 the even symmetric phase offset that is ap-
plied toSl(ω

′) will destroy the even symmetry of the magnitude of
S(ω′) such that the peak maximum moves away from the origin,
and therefore, the amplitude and frequency estimates of the QIFFT
estimator are no longer correct. Accordingly, the QIFFT estimator
suffers from additional bias quite similar as has been shown for the
Gaussian window in [7].

3. REDUCING THE BIAS

In the previous section we saw that the source of the bias of the
QIFFT estimator is the frequency slope of the sinusoid. A concep-
tually simple approach to estimate the parameters(A, φ, ω) of a
sinusoid related to a spectral peak requires two steps:

1. estimate the frequency slope,

2. demodulate the sinusoid and use the QIFFT estimator to
find the sinusoidal parameters.

Note, that this approach is in principle equivalent to the MLE
for constant amplitude linear FM signals described in [4]. Because
the demodulation technique is used for the frequency slope esti-
mation we will first discuss the frequency domain demodulation
algorithm. In the following section the frequency slope estimation
is described.

3.1. Demodulation

The main objective of the present algorithm is to provide a means
to demodulate the sinusoid using only the part of the spectral peak
that is accessible for analysis. Because the sinusoidal peak is cov-
ered by noise this part will generally be the part of the mainlobe
exceeding the noise level. Initially, we assume we are given a fre-
quency slope estimatêD = D for a peak that is part of a signal
spectrum.

In time domain the demodulation can be achieved simply by
multiplication with a demodulator signal

y(n) = e−iπD̂n2
. (6)

Multiplication of the signal in equation (6) with the signal equation
(1) will remove the frequency slope and keep all other parameters
unchanged such that the QIFFT algorithm can be applied. How-
ever, the signal we are interested in is observable only via the part
of its mainlobe that constitutes the observed spectral peak.

The demodulation algorithm that uses the observed peak to de-
modulate the sinusoid will be described in the frequency domain
using as sources the spectral peak to be analyzed and the spectrum
of the deconvolution signal. AssumeS(k) is theN -point DFT of
the sinusoid to be analyzed andY (k) the DFT of the demodula-
tor signal. All DFT spectra are calculated such that the origin of
the DFT basis functions is in the center of the analysis window.
The signal analysis window isws(n) and the demodulator signal
is windowed usingwy(n). To obtain the demodulated sinusoid

spectrumX(k) we would need to compute the circular convolu-
tion

X(k) = C
S(k) ~ Y (k)

N
, (7)

whereC is a normalization factor taking into account window-
ing effects. The demodulator windowwd will be multiplied with
the signal window such that the resulting spectrum contains as
effective window the product windowwy(n)ws(n). Therefore,
proper normalization would be achieved by means of settingC =
1/

P
n(wy(n)ws(n)).

Due to the fact that only part of the sinusoid spectrum is avail-
able the normalization factor needs to be adapted. Assume the
peak under investigation is denoted byP (k). P (k) is part of the
spectrumS(k) and coversB bins. To estimate the impact of the
missing part we create a spectral model of the observed sinusoid
assuming the initial slope estimate is correct

Pm(k) =
X

n

ws(n) exp(iπD̂n2) exp(−2πj

N
kn), (8)

and select a subset̄Pm(k) of B bins around the center frequency
k = 0. 1 The required normalization factor can now be approxi-
mately estimated as

C =
1

maxk(|P̄m(k) ~ Y (k))
. (9)

Now we can replaceS(k) in equation (7) byP (k) and demodulate
using the corrected normalization factorC. Some remarks are in
order:

• The correction factor will be more precise (lower bias) for
demodulator windows that concentrate more energy in the
B-bin wide band around frequency 0 of the spectrum. This
calls for low side lobes. The demodulator window, how-
ever, will as well be applied to the signal. As a result the
estimator sensitivity to noise will increase. Accordingly the
demodulator window allows to trade-off noise sensitivity
and bias. The experimental investigation suggests that the
use of the Hanning window as demodulator windowwd is
a favorable choice for all analysis windowsws.

• The compensation of the normalization factor assumes that
the amplitude slopea = 0 and that the peak model is cut
symmetrically with respect to the peak center. To create
an optimal correspondance between the compensation fac-
tor and the missing part of the signal it is preferable if the
spectral peakP (k) that is used for demodulation is as close
as possible to the peak model that is used to derive the com-
pensation factor. The comparison of a number of strategies
that may be employed to extract the observed peak from
the spectrum we found that cutting the peak such that its
left and right magnitude have approximately the same value
creates the smallest bias. Besides the fact that this method
achieves perfect compensation fora = 0 there is a second
advantage of this method that is related to the impact of
the background noise. Assuming the background noise en-
ergy to be constant and understanding the maximum border
amplitude of the peak as a very rough indicator of the back-
ground noise level we may conclude that cutting the peak
at its maximum border level could be beneficial because it
avoids the parts of the signal where the background noise is
dominant.

1If B is even the resulting model is not symmetric!
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• For parameter estimation from demodulated peaks with the
QIFFT estimator it is essential to use the bias correction
functions proposed in [8] with correction factors adapted to
the effective windowwy(n)ws(n).

Our experimental investigation shows, that the demodulation
kernelsY (k) can be precalculated for a fixed grid of frequency
slopes and then linearly interpolated to obtain an approximate de-
modulation kernel for any given slope. If the length of the analysis
windows isM a frequency slope grid with step size0.025/M2

is sufficient to produce estimates that are nearly indistinguishable
from the results produced with the non interpolated kernels. To
use the complete information that is available in the observed peak
we use deconvolution kernels of length2B + 1 centered around
the maximum of the deconvolution spectrum.

The implementation of the deconvolution can be done in the
frequency domain (as described) or in the time domain. Time do-
main implementation would probably be more efficient if at least
the demodulation kernel could be directly stored in the time do-
main. The possibilities of time domain interpolation of the demod-
ulation kernels have not yet been studied, we believe however, that
time domain interpolation would require on the fly generation of
the complex kernels from interpolated phase functions. Due to the
linearly modulated frequency of the demodulation kernels this will
most likely be less efficient than the frequency domain implemen-
tation that has been described above.

3.2. Frequency slope estimation

As mentioned above the maximum likelihood (ML) frequency slope
estimator for constant amplitude linear FM sinusoids maximizes
the amplitude of a demodulated peak [4]. Accordingly the maxi-
mization of the amplitude of the demodulated peak using the de-
modulation algorithm described above can be considered an ap-
proximate MLE as long as the amplitude slope is sufficiently small.

To avoid the search of a large grid of frequency slopes we
propose to use an approximate initial estimate of the frequency
slopeD̂, and then to use the frequency slope estimate and two
slopes withD̂±Do to create three different demodulations of the
observed peak. From the amplitudes of these demodulated peaks
a 2nd order polynomial model of the relation between frequency
slope and demodulated amplitude can be derived. The maximum
of this polynomial is expected to provide a refined estimate of the
frequency slope.

The open question we need to address is: how do we get an
approximate estimate of the frequency slope? Given the highest
order coefficientsαφ andαA of the QIFFT polynomial for am-
plitude (A) and phase (φ) of the peak under investigation the fre-
quency slope estimate for a Gaussian analysis window is [3, 9]

D̂ =
αφ

α2
φ + α2

A

. (10)

Note the remarkable fact, that the same estimator has been ob-
tained for exponential amplitude evolution in [3] and for a first
order approximation of the spectrum of a sinusoid with linear am-
plitude evolution in [9]. The fact that the amplitude evolution func-
tion does not affect the frequency slope estimator leads us to sup-
pose that that equation (10) will provide useful estimates for other
windows than the Gaussian window as well. The argument here
is that the signal that is obtained after the analysis window has
been applied can always be considered to be equivalently gener-
ated by means of a Gaussian analysis window and a sinusoid with

appropriately modified amplitude evolution. Because the desired
frequency estimate does not change with the amplitude evolution
of the sinusoid and because the estimator equation (10) appears to
be rather insensitive to small changes of the amplitude evolution
of the sinusoid it will be considered as approximate estimator for
the frequency slope for arbitrary analysis windows.

The free parameter to select is the frequency slope offsetDo.
In general a polynomial approximation improves when the approx-
imation range is decreased. This would call for a smallDo. In the
present case, however, the relation between demodulation slope
and amplitude of the demodulated peak is covered by measure-
ment noise (due to estimation errors of the amplitude of the de-
modulated peak, due to the partially observed sinusoidal spectrum,
and due to the sampling of the Fourier spectrum by the DFT). The
final selection of theDo parameter will be discussed in section4.1.

The precision of the frequency slope estimate that is obtained
from the maximum of the polynomial is slightly, but consistently
improved if the polynomial model is not constructed for the de-
modulated amplitudeŝAi but for Âi

√
Ci whereCi is the normal-

ization factor from equation (9). Up to now a theoretical expla-
nation of this experimental finding has not yet been found. Using√

C to calculate the demodulated amplitudes will obviously create
biased amplitude estimates. For the problem of slope estimation it
appears to improve the fit of the polynomial model and therefore,
it will be preferred. After the slope has been determined from the
maximum of the polynomial a re-normalization can be performed
if the amplitude of the supporting points is required.

4. EXPERIMENTAL EVALUATION

The proposed parameter estimation procedure will be evaluated by
means of comparing it to the bias correction algorithm proposed in
[3] for which Gaussian and Hanning analysis windows are used.
The results of that algorithm are denoted asAS. Furthermore we
use the original version of the demodulation estimator according to
[10]. (denoted asDE) and the new version that includes the slope
enhancement and uses the Hanning window for all demodulation
kernels (denoted asDS).

The window type that is used will be indicated by adding the
letterG for Gaussian orH for Hanning orX for both to the estima-
tor shortcut. The window applied to the demodulation kernels will
be equal to the analysis window forDEX and Hanning forDSX.
The Gaussian analysis window is cut such that it has a length of
8σ with σ being the standard deviation of the Gaussian. To facil-
itate orientation we display the results of the QIFFT estimator as
well as the Cramer-Rao bounds for second order polynomial phase
estimation with that have been presented in [11]. Note, however,
that these bounds have been found for constant amplitude polyno-
mial phase signals, such that they can only be used to provide an
approximate idea of the estimator efficiency.

In the experiments we use synthetic test signals with a single
sinusoid according to equation (1) withA = 1, ω0 randomly sam-
pled from a uniform distribution over the frequency range[0.2, 0.3],
φ randomly chosen from a uniform distribution between[−π, π],
and varying slopesa andD. The analysis window coversM =
1001 samples in all cases. The frequency slopeD is selected from
a uniform distribution over interval[−Dmax/M2, Dmax/M2].
Similarly the amplitude slopea is sampled from a uniform dis-
tribution over the range[−amax/M, amax/M ]. The slope ranges
are considered realistic for real world signals. Note, that in har-
monic signals the frequency slope scales with the partial number

DAFX-4



Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, 2007

a.) b.)

−20 −10 0 10 20 30 40 50 60 70 80
−240

−220

−200

−180

−160

−140

−120

−100

−80

SNR [dB]

fr
eq

 s
lo

pe
 e

rr
or

 [d
B

]
freq slope estimation (D=[−4.00,4.00]/M2), N=1024

CRB
DS Gaus 0.2
DS Hann 0.2
DS Gaus 0.4
DS Hann 0.4
DS Gaus 0.6
DS Hann 0.6
DS Gaus 0.8
DS Hann 0.8
AS Gauss
AS Hann

−20 −10 0 10 20 30 40 50 60 70 80
−240

−220

−200

−180

−160

−140

−120

−100

−80

SNR [dB]

fr
eq

 s
lo

pe
 e

rr
or

 [d
B

]

freq slope estimation (D=[−0.50,0.50]/M2), N=1024

CRB
DS Gaus 0.2
DS Hann 0.2
DS Gaus 0.4
DS Hann 0.4
DS Gaus 0.6
DS Hann 0.6
DS Gaus 0.8
DS Hann 0.8
AS Gauss
AS Hann

c.) d.)

−20 −10 0 10 20 30 40 50 60 70 80
−240

−220

−200

−180

−160

−140

−120

−100

−80

SNR [dB]

fr
eq

 s
lo

pe
 e

rr
or

 [d
B

]

freq slope estimation (D=[−4.00,4.00]/M2), N=4096

CRB
DS Gaus 0.2
DS Hann 0.2
DS Gaus 0.4
DS Hann 0.4
DS Gaus 0.6
DS Hann 0.6
DS Gaus 0.8
DS Hann 0.8
AS Gauss
AS Hann

−20 −10 0 10 20 30 40 50 60 70 80
−180

−160

−140

−120

−100

−80

−60

−40

−20

0

SNR [dB]

fr
eq

 e
rr

or
 [d

B
]

freq estimation (D=[−0.50,0.50]/M2), N=4096

CRB
DS Gaus 0.2
DS Hann 0.2
DS Gaus 0.4
DS Hann 0.4
DS Gaus 0.6
DS Hann 0.6
DS Gaus 0.8
DS Hann 0.8
AS Gauss
AS Hann

Figure 1: Comparison of the frequency slope estimation errors for theDSX estimator with varying slope offsetDo and theASX estimator.
Window size isM = 1001 and sinusoids with strong (a,c) and weak (b,d) amplitude and frequency modulation are considered. DFT size is
N = 4096 (a,b), andN = 1024 (c,d). The CRB for constant amplitude polynomial phase signals is displayed as lower limit. Algorithms
using a Gaussian/Hanning window are distinguished by means of solid/dashed lines. See text form more details.

.

such that for high partials extreme slopes may arise.

Note, that the implementation of the algorithm used for the
experimental investigation uses linearly interpolated demodulation
kernels as proposed in section 3.1.

4.1. Frequency slope estimation

In the first experiment we investigate into the frequency slope es-
timation. In Figure 1 we compare the enhanced demodulatorDSX
with theASXmethod according to equation (10). Because theDEX
estimator uses the frequency slope estimate provided byASXdi-
rectly we don’t considerDEX here. We use two different zero
padding factors (FFT sizeN = 1024 andN = 4096) and two
different sets of modulation ranges, the strong modulation is using
Dmax = 4 andamax = 1, while for weak modulation we select
Dmax = 0.5 andamax = 0.15. Note, that the weak modula-
tion range approximately covers the interval for that theASHbias
correction has been derived in [3]. TheDSXestimator is operated
with a set of demodulation offsetsDo ∈ [0.2, 0.4, 0.6, 0.8]/M2.

The results of the experiment are shown in Figure 1. There
are a number of conclusions that can be drawn from these figures.
First, we find that for strong modulation theDSXmethod has sig-
nificantly lower bias then theASXmethod. Second, we observe
that for the Hanning window theDSHestimator achieves a reduc-
tion of the estimation bias by2 − 30dB. The smallest improve-
ment is achieved for weak modulation and large oversampling fac-
tor. The only case where theASXestimator significantly outper-
forms DSX is weak modulation with small oversampling factor
and Gaussian analysis window. This could have been expected
because theASGestimator is exact for the Gaussian analysis win-
dow and the small oversampling factor does not influence this es-
timator. As expected the Hanning window has larger bias than the
Gaussian window but at the same time it is less sensitive to noise
by about4dB. In general theDSXare more sensitive to noise by
about2− 3db.

Considering the demodulation offsetDo we find that the off-
set has a significant impact only for strong modulation with small
oversampling factor and Hanning window. This is related to the
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Figure 2: Comparison of the estimation errors for the different parameter estimators using window sizeM = 1001 and FFT size
N = 4096 and (strong) linear AM/FM withDmax = 4 andamax = 1 (a-c). Figures (d-f) show phase estimation errors for different
modulation limits and FFT sizes. The CRB for constant amplitude polynomial phase signals is displayed as lower limit. Algorithms using
a Gaussian/Hanning window are distinguished by means of solid/dashed lines. See text form more details.
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fact that the initial frequency slope estimate of theASHthat is the
basis of the slope refinement inDSX is rather bad, such that the
model needs to compensate a larger range of slope errors. More-
over the amplitude estimation is less precise for smaller oversam-
pling factors such that a larger slope offset may be required to ob-
tain a polynomial model that captures the underlying relations. For
Do = 0.5 we get nearly optimal results for all cases which is why
we select this value for the following experiments.

4.2. Bias correction

After having discussed the properties of the frequency slope es-
timation we now investigate into the main topic of this paper, the
bias reduction. Due to space constraints we will only discuss a few
of the experiments we have conducted. We will discuss the results
for all parameters for strong modulation withDmax = 4/M2 and
amax = 1/M and an FFT size ofN = 4096. Furthermore we
select the phase bias reduction as an example and discuss the bias
reduction for the phase estimate for weak and strong modulation
and FFT sizesN = 1024 andN = 4096.

The results of the bias reduction for strong modulation and
N = 4096 are displayed in the left column of Figure 2. As
expected the amplitude estimate a.) of ASX is strongly biased
due to the fact that the amplitude trajectory model does not match
the signal. DEX and DSX are both similar and better then ASX.
Note, that the improved frequency slope estimate of DSX hardly
improves the amplitude estimate compared to DEX and that the
increase of the noise sensitivity of DEX and DSX is negligible.
For frequency b.) and phase estimation c.) DSX has by far the
smallest bias (compared to the other estimators using the same
analysis window). DEH and ASH perform approximately simi-
lar for both for frequency and phase estimation. Given that DEX
and ASX estimators both use the same frequency slope estimate
this shows that the bias of these two estimators is due to the error
in the frequency slope estimate which is improved by the refined
slope estimate of DSX.
The increase of the noise sensitivity for the demodulation algo-
rithms is negligible for phase estimation. For the frequency esti-
mator the use of the Hanning window instead of the analysis win-
dow is clearly diminishing the noise sensitivity when the analysis
window is Gaussian.

The right column of Figure 2 shows the phase bias removal
for all the experimental settings that were used in the evaluation of
the frequency slope estimation. A close inspection of the results
reveals that the performance of the bias removal is directly related
to the performance of the frequency slope estimation. This can
be expected because any error in the frequency slope estimate will
translate into an error in the bias correction algorithm.

As a summary of the experimental investigation of the algo-
rithm using synthetic signals we conclude that compared to the
QIFFT estimator all the bias reduction algorithms dramatically re-
duce the estimation bias. Compared to the recentASXestimator
the simple and enhanced demodulation algorithm both provide a
significant reduction of the estimation bias especially if the range
of the modulation is not confined to the rather limited range of val-
ues that has been considered in [3]. Comparing theDEX andDSX
algorithms we have shown that the enhanced slope estimation has
a direct and significant impact on the bias of the sinusoidal param-
eters. Due to the fact that the frequency slope bias of theDEX
algorithm increases with the modulation we expect that theDSX
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Figure 3: Residual signal of a vibrato tenor singer using QIFFT
estimator (top) and the enhanced demodulation method DSH (bot-
tom).

estimator is especially advantageous if the modulation is strong.
The possibility to freely select the demodulator window improves
the noise sensitivity in case the Gaussian window is used as anal-
ysis window.

4.3. A real world example

To demonstrate that the advantages of the proposed estimator are
effective in real world situations we have implemented the bias
reduction methods in a complete additive modeling system. The
theoretical investigation has been restricted to cover the case of re-
solved sinusoids, only. For real world applications, however, the
algorithm has to prove that it will act gracefully when the under-
lying model no longer holds (transients, unresolved sinusoids due
to reverberation, ...). The major problem in real world signals is
related to the fact that the enhanced frequency slope estimation
described in 3.2 may produce extreme values whenever the under-
lying signal model does not match the observed peak. In these
cases the method may for example try to model the transient or
nearby sinusoids by means of extreme slopes.
To prevent the degeneration of the estimator we use a number
of tests that are designed to allow us to detect the cases for that
the signal model that is used to analyze the peak does not hold.
The tests that verify the reliability of the second order polynomial
model of the relation between demodulation slope and amplitude
are: verification that the extremum of the polynomial model is a lo-
cal maximum, verification that the amplitude that is obtained with
the optimal demodulation slope is larger than the amplitude ob-
tained with the initial slope estimate, verification of that the slope
offset to reach the optimal slope is within±2Do. If one of these
tests fails the polynomial representation of the slope and amplitude
relation is considered unreliable and theDEX estimator is used as
a fallback.

The test that verifies the validity of the linear AM/FM sinu-
soidal representation is based on the center of gravity of the energy
(the mean time) of the signal related to the spectral peak under in-
vestigation. If the mean time is larger then the maximum mean
time that can be expected for the signal model equation (1) then
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we can assume that the peak is related to a sinusoid with transient
amplitude evolution [12]. In this situation the exponential ampli-
tude evolution used by theASXestimator is more appropriate than
the linear AM and therefore theASXestimator is used. Note, that
theASXandDEX estimators are sub modules that are required for
theDSXestimator anyway such that the fallback solutions do not
require additional costs in terms of implementation or calculations.

freq band ASH DEH DSH
full -4.19 -4.72 -5.04
0-2kHz -3.13 -3.75 -4.05
2-4kHz -7.32 -8.40 -9.33
4-6kHz -5.78 -6.90 -7.32

Table 1:The reduction of the energy of the residual signal obtained
with the different bias reduction algorithms. The performance of
the algorithms varies with the frequency band.

For the last experiment we compare the estimators by means
of the energy of the residual signal of an harmonic model of a tenor
singer. The signal contains strong vibrato, and therefore, the bias
due to the non-stationary parameters is expected to be significant.
The harmonic models contain a maximum of 30 sinusoids at each
time instant. We calculate the variance of the residual signal for
the QIFFT,DEH, DSH, andASH methods for a signal window
of 800 samples and a FFT size of 4096 samples. The variance
of the residual signal is compared to the QIFFT estimator and the
reduction of the residual energy in different frequency bands that
can be achieved with each estimator is listed in table (1).

From table (1) we can conclude that all bias reduction meth-
ods achieve significant improvements of the residual energy. It is
interesting to compare the performance in the different frequency
bands. In the low band the improvement is in the range from 3-
4dB. The improvement is less pronounced because the FM mod-
ulation extend is low. In the mid band range the FM modulation
becomes stronger and the reduction methods achieve residual en-
ergy reduction from 7.3-9.3dB. For the highest band the FM mod-
ulation is still stronger, but the noise level is higher as well such
that the reduction of the residual energy is not as strong.

The advantage of the demodulation methods overASHis clearly
visible. TheDEX estimator improves the reduction of theASHes-
timator by 0.5-1.2dB. TheDSXestimator is clearly the best with
an improvement compared to theASHestimator by 0.8-2dB. The
residual signals for the QIFFT andDSH estimator are shown in
figure Figure 3. The reduction of the residual is clearly visible.

5. CONCLUSIONS

In the present paper we have shown that an efficient bias reduc-
tion strategy for estimation of sinusoidal parameters consists of a
frequency slope estimation and demodulation prior to application
of the standard QIFFT estimator. The procedure significantly re-
duces the bias of the standard estimator. It does not require the use
of a Gaussian analysis window and does work for a much larger
range of modulation depths than a recently proposed algorithm.
The computational costs are significantly higher then those for the
standard estimator (≈ factor 8). However, they are sufficiently low
such that real time estimation of some tenth of sinusoids from au-
dio signals can be achieved. By means of investigation into the re-
duction of the residual energy that can be obtained for a real world

vibrato signal we have shown that the proposed enhanced demod-
ulation estimator is effectively working in real world situations. It
has been shown that compared to the standard QIFFT estimator
the reduction of the residual error depends on the frequency range
and can be as large as 6-9dB.
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