A Concurrent Constraints Factor Oracle Model for Music
Improvisation

Camilo Rueda!, Gérard Assayag?, and Shlomo Dubnov®

! Universidad Javeriana-Cali, Department of Science and Engineering of Computing
crueda@cic.puj.edu.co

2 IRCAM, Music Representations Team, Paris, assayag@ircam.fr

3 University of California, San Diego, sdubnove@ucsd.edu

Summary. Machine improvisation and related style simulation problems usually consider building repre-
sentations of time-based media data, such as music, either by explicit coding of rules or applying machine
learning methods. Stylistic learning applies such methods to musical sequences in order to capture salient
musical features and organize these features into a model. The Stylistic simulation process browses the
model in order to generate variant musical sequences that are stylistically consistent with the learned ma-
terial. If both the learning process and the simulation process happen in real-time, in an interactive system
where the computer “plays” with musicians, then Machine Improvisation is achieved. Improvisation models
have to cope with a trade-off between completeness (all the possible patterns and their continuation laws
are discovered) and incrementality (the completeness is ensured only asymptotically for infinite sequences).
In a previous work we devised a complete and incremental model based on the Factor Oracle Algorithm. In
this paper we propose a concurrent constraints model for the Factor Oracle and show how it can be used
in a concurrent learning/improvisation situation. Our model is based on a non-deterministic concurrent
constraint process calculus (NTCC). Such an approach allows the system to respond in a faster and more
flexible manner to real-life performance situations. In addition, the declarative nature of constraints greatly
simplifies the expansion of the system with improvisation rules at a higher musical level. We also describe
the implementation of our model in a NTCC interpreter written in Common Lisp that is capable of real
time performance.

Key words: Factor oracle, concurrent constraints process calculus, constraint programming, machine
learning, machine improvisation

1 Introduction

Machine improvisation and related style simulation problems usually consider building representa-
tions of time-based media data, such as music, either by explicit coding of rules or applying machine
learning methods. We call stylistic learning the process of applying such methods to musical se-
quences in order to capture salient musical features and organize these features into a model. The
Stylistic simulation process browses the model in order to generate variant musical sequences that
are stylistically consistent with the learned material. While it is hard to validate this consistency,
which involves some value judgement, it may however be sustained by two types of experiments :
successful style classification using the same model [3], and experimental psychology protocols in
the form of an extended “Turing test” [6]. If both the learning process and the simulation process

2 Camilo Rueda, Gérard Assayag, and Shlomo Dubnov

happen in real-time, in an interactive system where the computer “plays” with musicians, then
Machine Improvisation is achieved.

The learning schemes we have investigated so far belong to the family of statistical modeling,
more specifically to context-inference modeling. This kind of modeling as applied to musical se-
quences has been experimented since the very beginnings of computer music [Con03]. The idea
behind is that events in a musical piece can be predicted from the sequence of preceding events.
The operational property of such models is to provide the conditional probability distribution over
an alphabet given a preceding sequence called a context. This distribution is used for predicting
the next symbol providing the context already generated.

First experiments in context based modeling made intensive use of Markov chains, based on an
information-theoretic principle : complex sequences do not have obvious underlying source, however,
they may exhibit a so-called short memory property [8] : there exists a certain memory lengh L
such that the conditional probability distribution on the next symbol does not change significantly
if we condition it on contexts longer than L. This justifies the markovian approaches traditionally
used in computer music.

These models have to cope with a trade-off between completeness (all the possible patterns
and their continuation laws are discovered) and incrementality (the completeness is ensured only
asymptotically for infinite sequences). In order to reduce the model complexity, Variable Memory
Markov models (VMM) have successfully replaced previous fixed order markov automata.

In the music domain, we have proposed in earlier works a method for building musical style
analyzers and generators based on several algorithms for prediction of discrete sequences using
VMM. The class of these algorithms is large and we focused mainly on two variants of predictors
- universal prediction based on Incremental Parsing (IP) and prediction based on Probabilistic
Suffix Trees (PST) [4] [7]. These methods were either incomplete or not incremental. More recently,
we have introduced a new method based on the Factor Oracle Algorithm, which is complete and
incremental [1]. This method has been implemented in a purely sequential way in the OpenMusic
environment and succesfully tested in real-life improvisation situations (Omax system). Due to its
sequential nature, Omax cannot learn and improvize at the same time.

In this paper we propose to go one step further by providing a Concurrent Constraints model for
the factor oracle, showing how it can be used in a concurrent learning/improvisation situation. The
benefits of this new approach are numerous : the system will be more interactive ; it will respond in
faster and more flexible manner to real-life performance situations ; due to the declarative nature
of constraints, it wil Ibe easy to expand by adding rules at a higher musical level ; within the power
limitations of the machine, as many concurrent oracles will be able to work silmutaneously, in order
to model either multi-voice improvisation or multiple musical viewpoints ; it will be able to learn
on several musicians simultaneously.

2 Background

Our model is based on a concurrent constraint implementation of factor oracles. In this section we
describe both.

2.1 Factor Oracle

We give here a short description of the properties and construction of factor oracles. The formal
definitions can be found in [9]. Basically a factor oracle is a finite state automaton constructed in

A Concurrent Constraints Factor Oracle Model for Music Improvisation 3

linear time and space in an incremental fashion. A sequence of symbols s = o105 ... 0, is learned in
such an automaton, which states are 0,1,2...n. There is always a transition arrow (called factor
link) labelled by symbol o; going from state ¢ — 1 to state i, 1 < i < n. Depending on the structure
of s, other arrows will be added to the automaton. Some are directed from a state ¢ to a state 7,
where 0 < 7 < j < n. These also belong to the set of factor links and are labelled by symbol o;.
Some are directed “backwards”, going from a state i to a state j, where 0 < j < i < n. They are
called suffix links, and bear no label. The factor links model a factor automaton, that is every factor
p in s corresponds to a unique factor link path labeled by p, starting in 0 and ending in some other
state. Suffix links have an important property : a suffix link goes from ¢ to j iff the longest repeated
suffix of s[1..i] is recognized in j. Thus suffix links connect repeated patterns of s.

The oracle is learned on-line (see figure 1). For each new entering symbol o;, a new state i is added
and an arrow from ¢—1 to 7 is created with abel ;. Starting from ¢ —1, the suffix links are iteratively
followed backward, until a state is reached where a factor link with label o; originates (going to
some state j), or until there is no more suffix links to follow. For each state met during this iteration,
a new factor link labeled by o; is added from this state to ¢. Finally, a suffix link is added from ¢
to the state j or to state 0 depending on which condition terminated the iteration. Navigating the

Fig. 1. A FO automaton for s = abb

oracle in order to generate variants is straightforward : starting in any place, following factor links
generates a sequence of labelling symbols that are repetitions of portions of the learned sequence;
following one suffix link followed by a factor links creates a recombined pattern sharing a common
suffix with an existing pattern in the original sequence. This common suffix is, in effect, equivalent
to the context in the context-inferences model. In addition to completeness and incrementality of
this model, the best suffix is known at the minimal cost of just following one pointer. By following
more than one suffix link before going back to the factor generation, or by reducing the number of
successive factor link steps, we make the generated variant less resemblant to the original.

2.2 The Non deterministic Temporal Concurrent Constraint Calculus

Concurrent constraint programming (CCP [13]) is intended as a model of concurrent systems. In
CCP a concurrent system is modeled in terms of constraints over the variables of the system. A
constraint is a formula representing partial information about the values of some of the variables.
For example, in a system with variables pitchy, pitche taking MIDI values, the constraint pitch; >
pitcha + 2 specifies possible values for pitch; and pitchs (those where pitch; is at least a tone higher
than pitchg). The CCP model includes a set of (basic) constraints and a so-called entailment relation
E between constraints. This relation gives a way of deducing a constraint from the information
supplied by other constraints. For example, pitchy > pitchs + 2, pitchg > 60 |= pitch; > 48.

4 Camilo Rueda, Gérard Assayag, and Shlomo Dubnov

Computation in the CCP model proceeds by accumulating information (i.e. constraints) in a
store. The information specifies all that is known about the values of the variables at a given moment.
Information on the store may increase but it cannot decrease. Concurrent processes interact with
the store either telling new information or asking whether some constraint can be deduced (entailed)
from the information contained in it. It may well happens that the constraint cannot be entailed. In
this case the interacting process is said to block until some other processes tell enough information
to the store to deduce its constraint.

One drawback of the CCP model as presented above is that information is always accumulated.
There is no way to eliminate it. This poses difficulties for modeling reactive systems in which infor-
mation on a given variable changes depending on the interactions of a system with its environment,
as is the case, for example, in interactive musical improvisation systems. Different extensions on the
CCP model have been proposed to handle reactive systems. One such model is the non-deterministic
temporal concurrent constraint calculus (NTCC, [10]). This calculus introduces the notion of time,
seen as a sequence of time units. At each time unit a CCP computation takes place, starting with
an empty store (or one that has been given some information by the environment). Concurrent
constraints agents operate on this store as in the usual CCP model to accumulate information into
the store. As opposed to the CCP model, however, the agents can schedule processes to be run in
future temporal units. In addition, since at the beginning of each time unit a new store is created
information on the value of a variable can change (e.g. it can be forgotten) from one unit to the
next. The computational agents of NTCC are describe in table 1. Intuitively, agent tell(c) adds

Agent meaning

tell(c) Add c to the current store

when c do A if ¢ holds now, run A

local z in P run P with local x

A B Parallel composition

next A run A at the next instant

unless ¢ next A unless ¢ can be inferred now, run A
> ic; When ¢; do P; choose P; s.t. ¢; holds

* P delay P undefinitely (not forever)

'P Execute P each time unit (from now)

Table 1. NTCC agents

information ¢ to the store of the current time unit. This information can then be used to deduce
other constraints. Agent when ¢ do A asks whether ¢ can be deduced to hold from the current
store and if so, executes agent A. Computed information that is to remain local to an agent is
defined by local x in P. Here, information on z added by P is only seen by itself or by its sub-
processes (if any). Reciprocally, any existing global information on z cannot be seen by P. The
parallel composition agent A || B runs A and B in parallel. Agent next A schedules A to be run
at the next time unit. Notice that an agent next tell(c) adds information ¢ to the store of the next
time unit. Notice that this store might initially be empty or contain some information provided
externally by the environment (e.g. as the result of the system interacting with a musician), but
is completely independent of the store of the current time unit. Agent unless ¢ next A offers the
possibility of performing activity on the basis of absence of information. When constraint ¢ cannot
be deduced from the store of the current time unit, action A is performed in the next time unit.

A Concurrent Constraints Factor Oracle Model for Music Improvisation 5

It should be noticed that in NTCC this means that entailment checking of ¢ is performed when all
other processes have finished, i.e. when it is certain that ¢ cannot be deduced in the current time
unit.

The choice agent Zie ; when ¢; do P; non deterministically runs some process F; such that its
guard ¢; can be deduced from the current store. Several of the ¢;’s could hold but only one P; is non
deterministically chosen. Agent x P schedules P to be run either now or at some unspecified time
in the future. In NTCC, agents are ephemeral. Their life span is just the time unit in which they
run. Agent | P adds persistence. It launches process P at the current time unit and at all future
time units.

The following example illustrates computation in NTCC.

SY ST & 'tell(start > 20) || CHECK || PLAY || = tell(play(done)) || BEAT(0)

PLAY &' > ie{1,2,3; When play(on) do NOT'E;

CHECK ¥ unless beat < start next play(on) || unless play(done) next CHECK

BEAT(i) % tell(beat = i) | next BEAT(i+ 1)

The system asserts (persistently) that the value of start is greater than 20 and runs in parallel three
processes PLAY , CHECK and BEAT. It also launches a process that is to stop performance at
some unspecified time unit in the future. Process PLAY non deterministically chooses one of three
notes when playing is on. Process CH ECK asserts that playing is on once it can be deduced that
the beat counter is greater than or equal to the starting time. It does so repeatedly until the stop
playing signal arrives. The BEAT process is simply a counter (recursive process definitions can be
encoded in the standard NTCC calculus. See [10]).

The NTCC calculus has an associated linear temporal logic. Desirable properties of an NTCC
model can be expressed as a formula in this logic. A proof system allows then to verify wether the
NTCC model satisfies or not the property.

The NTCC calculus has been used to model synchronization of concurrent musical processes
([12]). We use it here to account for the concurrent interaction of Factor Oracle learning and
improvisation processes with a musician during performance.

3 The NTCC model for FO improvisation

The Factor Oracle automaton generation process is shown below. The system consists of three
subsystems, learning (ADD), improvisation (CHOICE) and playing (PLAY ER) running concur-
rently. A synchronization process (SY NC') decides when a new symbol can be learned. The system
uses three kinds of variables to represent the partially built Factor Oracle automaton. Variables
fromy denote the set of labels of all currently existing factor links going forward from k. Variables
S; are suffix (i.e. backward) links from each state ¢ and variables d; , give the state reached from i
by following a factor link labeled o. The automaton of figure 1, for example, can be represented by
fromg = {a, b}, from; = {b},51 =0,52 = 0,006 = 1,00 = 2,01, = 2.

The ntce processes below incrementally extend an automaton by adding information on those
variables. Process LOOP;(k) adds (if needed) factor links labeled o; to state ¢ from all states k
reached from ¢ — 1 by backward links, then computes S;, the suffix link from 3.

6 Camilo Rueda, Gérard Assayag, and Shlomo Dubnov

LOOP;(k) &

when k£ > 0 do
unless o; € fromy
next (! tell(o; € fromy) || (! tell(6x,, = 1) || LOOP;(Sk)
|| when k= —1 do ! tell(S; = 0)
|| when k> 0Ao0; € fromy do ! tell(S; = d.0,)

The process adding state ¢ and working backwards through the automaton is the following:

ADD; % 1 tell(§;_1,, =1i) | LOOP;(S;_y)

The two processes above model the learning phase. The learning and improvisation phases can
be done concurrently. They must proceed in such a way that improvisation always works on a
completely built subgraph. This is easily accomplished by synchronizing on S;. Indeed, when S;
is determined the subgraph up to state ¢ has been completely built. The SY NC process below
keeps adding symbols to the automaton provided the previous one has already been added (S;_1 is
determined) and the performer has already played beyond the currently known symbols (go > i).
Notice that synchronization is greatly simplified by the use of constraints. If at a given moment
variable S; has no value, when processes depending on it are blocked.

SYNC; % when S;_; > —~1Ago>ido (ADD; | next SYNCj.1)
|| unless S;_1 > —1Ago>inextSYNC;

A musician is modeled as a process playing some note p every once in a while. The following
process non deterministically choses between playing now or postponing decision to the next time
unit. When playing is decided a further non deterministic choice is performed to select some symbol
p (the note) from the alphabet. This represents the act of playing.

PLAYER; &
> pex When true do (! tell(o; =p) || tell(go=j) | next PLAYER;1)
+ (tell(go=j—1) || next PLAYER;)

In the above, notation A + B, the non-deterministic choice between A and B, is a shorthand for
> ie{1,2y When true do (when i =1do A | wheni=2do B).

The improvisation process uses a probability distribution function @ : R — {0,1}. The process
starts from state k and chooses stochastically according to probability ¢ whether to output symbol
og+1 or to follow a backward link Sy and then output some (non deterministically chosen) symbol

o € fromg,. When S;, = —1 there is no other choice but to output symbol oy 1. This is modeled
as follows:
def
CHOICEs(k) =
when Sy = —1 do next (tell(out = o;11) || CHOICEg(k+1))

1
| tell(flip = &(q))
|| when flip=1A Sg+1 >0 do next(telllout = oyy1) | CHOICEg(k+1))
| unless flip=1ASg41 >0
next .y when o € fromg, do (telllout = 0) || CHOICE¢(ds,,0)

A Concurrent Constraints Factor Oracle Model for Music Improvisation 7

Stochastic constructs are so common in system modeling that NTCC was extended to include
them (see [11]). The extension allows prefixing a process with a probability. Process ,P is launched
with probability p. Using this extension the CHOICE process could be easily extended to do a
probabilistic rather than a non deterministic choice of an element o € fromg,.

The whole system is represented by a process doing the appropriate variable initializations and
launching all processes. Improvisation is scheduled to start after n symbols have been produced by
the player.

Systemy, p, ef
| !tell(g=p) || !tell(So=-1) || PLAYER, || SYNC;
|| ! when go=n do CHOICEg(n)

Initially, information on most variables is missing. Most unless processes will then be launched
to add information representing the partially constructed automaton. For instance, in the partially
constructed automaton of figure 2 a backward link from state 4 to state 3 is missing.

Fig. 2. Partial automaton

In this situation, the above processes will have computed the following (permanent) information:

00,0 = 1,00 = 2,01 = 2,02 = 3,03 = 4
a € fromgy,b € fromg,b € fromq,b € froma,b € froms
Sp=-1,5,=0,5 =0,5 =2

o1 =a,00 =b,03 =b,04 =0

Since the learning process has not yet computed any information on Sy, process SY NCj5 is waiting
and process CHOICEg(3) (if running) is improvising based on the complete sub-automaton up to
state 3.

4 Running the NTCC model

For testing the NTCC model described above we implemented in the Common Lisp programming
language a NTCC interpreter. Lisp was used because we plan to integrate the factor oracle impro-
visation model into the Open Music [14] composition environment. This environment, written in
Lisp, contains a great number of music composition tools developed from the expertise of many
composers.

8 Camilo Rueda, Gérard Assayag, and Shlomo Dubnov

In the interpreter each NTCC agent is represented by a concurrent Lisp process. Each process
has a particular waiting function. For example, the waiting function of the process implementing
a when z > y do tell(z = x + y) waits until its guard can be deduced to be true. That of a
unless z < y + z nexttell(w = y + 2) waits until the current time unit is done. The waiting
function is used by the Lisp scheduler to decide whether to activate or to defer the process. The
architecture of the interpreter is shown in figure 3. First, all user defined NTCC processes are
launched causing Lisp to place them in a process queue. The Lisp scheduler repeatedly selects
from this queue some enabled process to be run. Each NTCC process is thus run when its waiting
function allows (otherwise it is rescheduled).

A concurrent TICK process is permanently testing stability of the current time unit. Time
unit stability is achieved either when no processes are left in the queue or when all processes have
been stopped by their waiting function. When this is the case, the TIC'K process deletes from the
queue all but the next and unless processes. The unless processes are then run and any resulting
processes (together with the previously existing next processes) are rescheduled for the next time
unit.

Each of the mentioned processes run concurrently in a separate thread, following closely the
concurrent nature of NTCC.

Current time unit process queue |

(LISP SCHEDULER)

!

| wait-when l |wait—un|ess| | wait-next |

LISP VARIABLES
SPACE

Fig. 3. NTCC interpreter architecture

wait-tell

Next Unit Process queue

The Lisp implementation of each NTCC process is similar. A when process, for example, is
implemented as follows:

(defun iswhen (test body vars)
(if vars (wait-entailed test))
(eval body))

(defun whenp (test body &rest vars)
(process-run-function "WHEN" (function iswhen) test body vars))

A Concurrent Constraints Factor Oracle Model for Music Improvisation 9

The Lisp primitive “process-run-function” launches a process whose code is given by the
“iswhen” function. This code defines “wait-entailed” as waiting function (testing entailment of
the when guard) and runs the NTCC process comprising the body of when. This only occurs if the
waiting function ever returns true.

In the Factor Oracle model the number of variables is not known a priori since learning is
incremental. This usually precludes the use of constraint satisfaction schemes. Being able to handle
models with an unknown number of variables is a powerful feature of NTCC. The interpreter easily
implements this using the power of Lisp for dynamically translating any string into a variable. For
example, a variable S3 5 can be constructed and used in the interpreter with

(make-variable "S" 3 5)
(whenp (> k 0) (tellp (= S_3.5z)))

Moreover, the user is also given the possibility of launching explicitly a time unit computation.
Launching 100 time units is done by

(tick-current-time 100)

The syntax of NTCC processes in the interpreter closely resembles the corresponding calculus
definitions (using Lisp parenthesized prefix notation). For example, process SY NC; is implemented
as

(define-process synci (i)
(let ((S_i (make-variable "S" i)))
(parp (whenp (and (>= $S_i-1 -1) (>= go i))
(parp (callp addi i)
(nextp (callp synci (1+ 1))))
(unlessp (and (>= S_i-1 -1) (>= go i))
(callp synci i)))))

where parp stands for the NTCC parallel construct. Recursive NTCC process definitions are thus
simply implemented as lisp functions invoked using a special callp primitive. The recursive call only
takes effect when the enclosing next process is executed in the next time unit. The following code
concurrently launches the learning process constructing the automaton (function synci), the player,
the factor oracle improvisation implementing CHOIC Eg (k) (function improvise) and a replicated
process continuously setting a note (in MIDI cents notation) when it is available.

(parp (callp player 1)
(callp synci 1)
(callp improvise 0 40)
(rep (whenp (>= out 0)
(tellp (isequal current-note (* out 100))))))

The second argument of improvise is the probability value in percentage. The above runs con-
currently with a further independent process playing every thirtieth of a second a note computed
by the factor oracle. If the factor oracle has not yet computed its next note, the previous one is
repeated:

(defun do-play-tick ()
(process-wait-with-timeout "time" 2)
(play-midi-note current-note 70 300))

10 Camilo Rueda, Gérard Assayag, and Shlomo Dubnov
(do-play-tick)))

(defun play-each-note ()
(process-run-function "PLAYING" (function do-play-tick)))

In the above, value 2 in “process-wait-with-timeout” denotes a 2 sixtieth of a second wait. Param-
eters 70 and 300 denote fixed volume and duration (in milliseconds) of the played note.

We ran the above system in a 1.67 GHz Apple PowerBook G4 using Digitool’s MCL version
of Common Lisp. Each NTCC time unit computation took an average of 25 milliseconds. This is
fast enough for real time interaction in an actual performance situation. Each time unit schedules
around 20 concurrent processes. The indicated time figures are for a system running concurrently
the learning and improvisation phases (plus a process simulating the player). In previously reported
improvisation systems the used scheme is an iteration of the learning and improvisation phases run
in sequence. All synchronization in this concurrent version is transparently ensured by the blocking
nature of when NTCC processes.

5 Conclusions and future work

We have shown that a concurrent constraints model of a Factor Oracle music improvisation process
allows a simple expression of all synchronizing that goes on when both the learning and improvi-
sation phases are done concurrently. The reactive nature of the NTCC calculus is used to simulate
in a natural manner the interaction between the system and a musician during performance. We
described an implementation of a NTCC interpreter in Common Lisp. The interpreter runs concur-
rently the learning and improvisation phases in real time. The results presented here are encouraging
to develop the model in several directions:

e Improvisation situation set-ups :

A system comprising

— n performers and n oracles learning and performing
The challenge here is maintaining real time performance. Since the additional processes are
independent, this should pose no difficulties for modeling.

— 1 performer, one oracle learning, several improvisation processes running concurrently on
the same oracle

— 1 performer, several oracles learning different viewpoints of the same performance (e.g. pitch,
duration, intensity). These oracles have to be put to work together in order to rebuild
complete musical data.

e Technical issues :

in the case of a complex improvisation set-up such as those mentioned, complex synchronization

issues arise. When several oracles improvise concurrently, they act as independent agents. Some

mechanisms should be provided for these agents to exchange information and take decisions.

For instance if parallel oracles model different musical viewpoints, the prediction of the next

value by e.g. the pitch oracle, could result in a constraint put on the duration oracle (not

any duration may be accepted for a given pitch). In the case where multiple oracles model a

polyphony of performers, they must have some way of synchronizing rythmically in order to

deliver a consistent improvisation. This might pose a big challenge to the NTCC model since

what is computed at each time unit might not be uniform for each viewpoint. Acting according

A Concurrent Constraints Factor Oracle Model for Music Improvisation 11

to information computed at, say, three time units in the past, might be awkward to model since
the calculus only has “future” constructs.
e Feed back control :

In order to implement reinforcement strategies, the system must be able to learn not only from
the external world but also from the output of an oracle. A candidate sequence generated by
an oracle could be modelled by a supervisor oracle (or antother model) in order to make some
(e.g. entropy) measurements on it, and give a weight to the candidate. Certain transitions could
be reinforced corrsponding to "good paths”. This would be a way to control variety in the
generation and to avoid falling into generaton loops. More powerful constructs than those that
have been proposed in stochastic extensions of NTCC would be needed to model these kind of
preferences for choosing some NTCC process for execution.

References

1. Assayag, G., Dubnov, S. “Using Factor Oracles for Machine Improvisation.” G. Assayag, V.
Cafagna, M. Chemillier (eds.), Formal Systems and Music special issue, Soft Computing 8, pp.
1432-7643, September 2004.

2. Dubnov, S., Assayag, G. “Universal Prediction Applied to Stylistic Music Generation” in Math-
ematics and Music, A Diderot Mathematical Forum, Assayag, G.; Feichtinger, H.G.; Rodrigues,
J.F. (Eds.), pp.147-160, Springer-Verlag, Berlin, 2002.

3. Dubnov, S., Assayag, G., El-Yaniv, R. “Universal Classification Applied to Musical Sequences”
Proc. Intl Computer Music Conf., Intl Computer Music Assoc., 1998, pp. 332-340.

4. Assayag, G., Dubnov, S., Delerue, O., “Guessing the Composers Mind: Applying Universal Pre-
diction to Musical Style” Proc. Intl Computer Music Conf., Intl Computer Music Assoc., pp.
496-499, 1999.

5. Conklin, D. “Music Generation from Statistical Models”, Proceedings of the AISB 2003 Sympo-
sium on Artificial Intelligence and Creativity in the Arts and Sciences, Aberystwyth, Wales, 30
35, 2003.

6. Poirson, E., Simulations d’improvisations [’aide d’un automate de facteurs et validation experi-
mentale, Rapport de DEA ATIAM, Universit Pierre et Marie Curie, 2002.

7. Dubnov, S., Assayag, G., Lartillot, O., Bejerano, G., “Using Machine-Learning Methods for
Musical Style Modeling”, IEEE Computer, Vol. 10, n 38, p.73-80, October 2003.

8. D. Ron, Y. Singer, and N. Tishby, “The Power of Amnesia: Learning Probabilistic Automata
with Variable Memory Length”, Machine Learning, vol. 25, 1996, pp. 117-149.

9. Allauzen C., Crochemore M., Raffinot M., “ Factor oracle: a new structure for pattern matching”
Proceedings of SOFSEM’99, Theory and Practice of Informatics J. Pavelka, G. Tel and M. Bar-
tosek ed., Milovy, Lecture Notes in Computer Science 1725, pp 291-306, Springer-Verlag, Berlin,
1999.

10. C. Palamidessi and F. Valencia. “A Temporal Concurrent Constraint Programming Calculus”
Proc. of the Seventh International Conference on Principles and Practice of Constraint Program-
ming CP2001, Springer-Verlag, 2001.

11. C. Olarte and C. Rueda. “A Stochastic non-deterministic Temporal Concurrent Constraint Cal-
culus” Proc. of the XXXI Latinamerican Informatics Conference CP2005, Cali, 2005.

12. C. Rueda and F. Valencia. ” Proving musical properties Using a temporal Concurrent Constraints
calculus” Procedings of the ICMC2002, Goteborg, Sweden, 2002.

13. V. Saraswat. Concurrent Constraint Programming The MIT Press, Cambridge, MA, 1993.

14. Assayag, G., Rueda C. , Laurson, M. Agon, C. Delerue, O. “Computer Assisted Composition at
Ircam” Computer Music Journal 23:3, fall 1999

