
Proc. of the 8th Int. Conference on Digital Audio Effects (DAFx’05), Madrid, Spain, September 20-22, 2005

GABOR, MULTI-REPRESENTATION REAL-TIME ANALYSIS/SYNTHESIS

Norbert Schnell and Diemo Schwarz

Real-Time Applications Team
IRCAM - Centre Pompidou, Paris, France

Norbert.Schnell@ircam.fr, Diemo.Schwarz@ircam.fr

ABSTRACT

This article describes a set of modules for Max/MSP for real-time
sound analysis and synthesis combining various models, represen-
tations and timing paradigms. Gabor provides a unified framework
for granular synthesis, PSOLA, phase vocoder, additive synthesis
and other STFT techniques. Gabor’s processing scheme allows
for the treatment of atomic sound particles at arbitrary rates and
instants. Gabor is based on FTM, an extension of Max/MSP, in-
troducing complex data structures such as matrices and sequences
to the Max data flow programming paradigm. Most of the sig-
nal processing operators of the Gabor modules handle vector and
matrix representations closely related to SDIF sound description
formats.

1. INTRODUCTION

1.1. Background

Max/MSP and similar graphical programming environments [12,
11, 4] are popular for rapid prototyping and composition of inter-
active audio and music applications. The popularity of the Max
paradigm can been seen as related to the inherently modular and
thus intuitive approach to programming using a metaphor of ana-
log synthesizers. In Max, modules are connected to a unidirec-
tional data flow graph, called apatch. Starting from the early Max
environment allowing only for the processing of streams of integer
numbers related to MIDI information, today Max/MSP integrates
the processing of audio and video streams. Many other multi-
media programming environments provide a similar programming
paradigm.

The family of Max languages in the tradition of the Music V
music programming languages distinguish event orientedcontrol
processing and constant rateaudiostream processing. Max/MSP
as well as some similar environments also allow for restricted multi-
rate processing of audio streams.

The Gabor library introduces a signal processing paradigm
based on the general idea of streams of atomic sound entities pro-
cessed with arbitrary timing or arbitrary processing rates. Gabor
modules are scheduled within the Max event (or message) pro-
cessing model rather than the block-wise signal stream processing
engine. This way Gabor allows for the combination of different
signal processing techniques in a unified framework one could de-
scribe asgeneralized granular synthesis.

In summary Gabor relies on two basic ideas of processing sound
asatomic particlesand inarbitrary rates:

• Gabor processes arbitrary atomic sound particles such as
grains, wave periods or frames and their description by dif-

ferent sets of parameters or coefficients in form of streams
of generic vectors and matrices.

• Sound particles are processed at arbitrary rates or moments
and thus can be adjusted to the frequency, texture or rhythm
of a sound or to the required processing rate of a particular
algorithm.

The nameGabor is a reference to Dennis Gabor1 who first
raised the idea of “acoustical quanta“, particles of sound at the
edge of temporal and timbal perception, and who explored their
mathematical properties in relation to quantum mechanics [7, 8].
This article will extend the notion of “quanta“ compared to the
precise definition by Dennis Gabor for his work on information
theory and the time-frequency representation named after him.

1.2. Overview

The Gabor library provides various methods to cut a continuous
audio stream into a stream of vectors using different temporal sche-
mes. It implements various analysis and synthesis operators treat-
ing vectors of sound samples, spectral representations or coeffi-
cients. A generic overlap-add buffer reconstitutes a continuous au-
dio stream from a stream of vectors at the output of a Gabor patch
(Max sub-program). Figure 1 shows the simplified flow-chart of a
Max patch using Gabor.

The current version of Gabor supports the following analysis,
synthesis and signal processing techniques:

• Granular synthesis

• PSOLA analysis/re-synthesis

• Phase vocoder and other STFT based techniques

• Sinusoidal analysis/re-synthesis

• Convolution, correlation, etc.

• Estimation of spectral envelopes

• Estimation of various audio descriptors

Gabor is based on FTM [5], an extension of Max/MSP support-
ing the handling and processing of complex data structures within
the Max data flow programming paradigm. Gabor mainly uses
the FTM fmatclass, a simple two-dimensional matrix of floating-
point values. The same matrix class is used to represent vectors of
sound samples, complex Fourier spectra (two-column matrix) and
any other representation of a frame of sound as a vector of analy-
sis coefficients or parameters (e.g. cepstrum coefficients, partials
or formants). Gabor matrix formats are kept as close as possible

1Nobel prize in Physics 1971 for his invention and development of the
holographic method

DAFX-1



Proc. of the 8th Int. Conference on Digital Audio Effects (DAFx’05), Madrid, Spain, September 20-22, 2005

Figure 1:General data flow of a Gabor program

to the matrix formats specified for the SDIF Sound Description
Interchange Format [16].

Other libraries based on FTM address further vector and ma-
trix processing, statistical modeling and recognition algorithms for
sound, gesture and musical data as well as real-time data base han-
dling and information retrieval.

2. STREAMS OF “QUANTA”

Gabor currently provides two different delay line modules. While
the modulegbr.dline represents a usual delay line storing the
last samples of an incoming audio stream, the modulegbr.drain
stands for the inverse case of a buffer holding the next samples to
be output. For many applications these delay line modules are the
interface between audio streams and streams of vectors using the
modulesgbr.copy to copy a vector of sound from a delay line
andgbr.paste to overlap-add vectors back into a continuous
audio stream. Thegbr.paste module provides various interpo-
lation modes to overlap the incoming stream of vectors with ade-
quate precision.

The timing of a stream of vectors between an input delay line
and an output buffer — the moment of their occurrence or their
period — is arbitrary but very precisely taken into account by the
Gabor modules using 64-bit floating-point precision. A vector is
triggered by a message received by thegbr.copy module giving
a position in the input delay line and size of the vector to be copied
and sent from the output of the module. Alternativelygbr.copy
can also generate a stream of vectors from another (longer) vec-
tor for example representing a pre-recorded audio stream (i.e. an
imported sound file).

In addition to the generic delay line and copy/paste modules
Gabor provides three optimized modules for cutting a continuous
audio input stream into a stream of vectors. Each module addresses
a particular signal processing technique.

gbr.grain˜ ... copies single grains out of an input stream
(combininggbr.dline andgbr.copy )

gbr.psy˜ ... cuts input stream into elementary wave forms
gbr.slice˜ ... cuts input stream into overlapping vectors

specified in samples (especially for STFT use)

A more complex Gabor module,gbr.svp˜ , provides the op-
timized analysis stage of an advanced phase vocoder [3, 9] inte-
grating multiple FFT calculations and phase vocoder specific pro-
cessing. The module directly provides matrices of frequency do-
main data at its output.

Finally a modulegbr.ola˜ is provided as a generic sink
of vector streams combining the two modulesgbr.paste and
gbr.drain˜ . Usually all analysis/re-synthesis techniques us-
ing one of the above modules to generate a stream of vectors use
thegbr.ola˜ module to reconstitute a continuous audio stream
from the incoming vectors by overlap-add.

2.1. Grains and Sound Segments

Granular synthesis is the most general case of composing an audio
stream of or cutting an audio stream into atomic entities [18, 13].
For granular synthesis with Gabor, a stream of vectors can be
generated from an audio stream using thegbr.grain˜ module
specifying grain position (i.e. the onset time of the grain in a delay
line or another vector) and grain duration in milliseconds.

Figure 2:Granular synthesis example using a delay line.

Figure 2 shows a simple example applying stereo granulation
to a real-time audio stream using a delay line. By varying the po-
sition in the delay line the user can continuously navigate through
the last 10 seconds of the incoming sound. The stream of vectors
stays unprocessed apart from a alternating distribution to the left
and right audio channel at the output.

DAFX-2



Proc. of the 8th Int. Conference on Digital Audio Effects (DAFx’05), Madrid, Spain, September 20-22, 2005

As with grains, one can work with streams of longer sound
segments corresponding to beats, notes or atomic musical phrases
or sound samples. Gabor proposes here a general alternative to
the usual unit generator approach of Max/MSP and many other
computer music languages and programming environments.

2.2. Waves and Periods

PSOLA (Pitch Synchronous Overlap-add) requires pitch synchro-
nous processing [10], whereby a wave period may not be a multi-
ple of the sample period. In this sense modular real-time PSOLA
applications utilizevariable ratesignal processing (as opposed to
multi-rate).

For PSOLA analysis and re-synthesis applications the module
gbr.psy˜ was created. It cuts an incoming audio stream into a
stream of vectors representing successive elementary waveforms
if the signal is voiced. For the unvoiced parts, arbitrary grains of a
fixed period and duration are output. The module uses theYin al-
gorithm [2] and provides the current frequency (zero for unvoiced
parts) as well as the periodicity factor and the energy of the current
waveform.

Figure 3:PSOLA analysis/re-synthesis example.

Figure 3 shows a simple PSOLA analysis re-synthesis exam-
ple. In this example the frequency value is used to separate voiced
signal periods and unvoiced grains into two streams of vectors.
While the unvoiced vectors are immediately copied into the overlap-

add buffer, the elementary waveforms are stored in a static vector
(calledvoicedin the example). The static vector is output with a
frequency depending on the original analysis frequency (i.e. al-
lowing for transposition given in cents).

2.3. STFT and company

In order to provide an optimized interface for constant rate signal
processing techniques such as those based on short-time Fourier
transforms, the modulegbr.slice˜ was introduced. It cuts
the incoming audio streams into slices of overlapping vectors of
a fixed size specified in samples.

Figure 4:STFT convolution with estimated spectral envelope.

The example in figure 4 uses two synchronizedgbr.slice˜
modules to perform a cross-synthesis of two incoming audio sig-
nal streams. On the stream at the right of the example a spec-
tral envelope is estimated using a cepstrum method [17] with the
given number of cepstrum coefficients. The spectral envelope is
applied to the stream on the left by convolution multiplying the
two streams of vectors in the frequency domain before applying
an IFFT and outputting the result to thegbr.ola˜ module.

Additive synthesis integrates with Gabor as an STFT tech-
nique using theFFT-1method based on inverse Fourier Transform
[14]. Using this technique the Gabor additive synthesis modules
add partials to a short-time FFT spectrum and could be easily com-
bined with the above convolution example of figure 4.

Gabor integrates a complex phase vocoder analysis stage which
directly transforms an incoming audio stream into frequency do-
main data. Thegbr.svpana˜ module outputs vectors of a spec-
tral representation giving an amplitude, a frequency, a phase and a

DAFX-3



Proc. of the 8th Int. Conference on Digital Audio Effects (DAFx’05), Madrid, Spain, September 20-22, 2005

Figure 5:Sinusoidal analysis/re-synthesis example.

class for each FFT bin. The module internally performs a classifi-
cation of the FFT bins [15] distinguishing bins related to sinusoidal
spectral components (i.e. partials) and bins being part of a signal
transient. The representation allows for dedicated processing of
the classified bins obtaining high quality spectral domain process-
ing such as time-stretching, pitch shifting and cross-synthesis.

3. DSP TIMING AND SCHEDULING

Usually audio processing in Max is handled by a dedicated com-
putation engine, MSP (Max Signal Processing). As in similar pro-
gramming environments and plug-in hosts, constant rate audio sig-
nals in MSP are processed block-wise by a chain of function calls
deduced from the graph of audio processing modules of a Max
patch. MSP provides an efficient interpretation of a given graph of
modules with a short edit-compile-and-run loop and has the poten-
tial of execution with constant computation load.

Particular MSP sub-patches allow for restricted multi-rate pro-
cessing by changing the calculation block size and block rate within
a defined region of the graph. In this way, short time FFT based
frequency domain processing using a constant FFT and hop size is
introduced into Max/MSP.

In this context, pitch-synchronous processing or granular syn-
thesis was only possible within integrated synthesizer modules with-
out providing modularity for the audio processing operators.

In order to be able to combine constant rate processing with
pitch-synchronous and general granular synthesis in a modular
framework, Gabor modules have to be able to exchange vectors
with an arbitrary constantly changing rate or, in other words, at
any moment. As mentioned above the vectors exchanged between
the Gabor modules are scheduled within the message system of

Max based on a discrete event computation model. Gabor allows
this way to create and process streams of vectors adjusted to the
frequency, texture or rhythm of a particular sound or the required
processing rate of a particular algorithm for analysis, transforma-
tion and synthesis.

3.1. “Logical” Time

Regarding the logic time of Max/MSP, each message or event sent
from one module to another is accompanied by a 64-bit precise
floating-point time. When converting an audio stream to and from
a stream of vectors, these time-tags are carefully taken into account
by the Gabor modules. In addition, when copying samples from
a continuous sample stream (i.e. delay line or vector) to a stream
of grains or wave periods, a fractional offset and exact duration
can be stored within each vector. These values correspond to the
precise starting position of the sound segment between two actual
samples of the original audio stream and the precise duration.

The overlap-add module uses the Max message system time-
tag of the incoming vector in combination with the fractional off-
set value for the precise reconstitution of a signal stream at the
output. An optional delay time can paste the vector arbitrarily at a
“later” position into the overlap-add buffer. Another module which
takes into account the fractional offset and duration of a vector is
gbr.wind=˜ . The module adjusts a chosen window to the exact
onset and duration of the grain or wave period.

3.2. “Real” Time

The Max/MSP scheduler alternates the signal block calculations
of the MSP engine and the event processing initiated by the user
interface, alarm system and external inputs (MIDI etc.). For each
scheduler tick, the “logical time” advances by the period of time
corresponding to a block of samples. In the ideal case, all calcu-
lations related to events or messages belonging to the time period
of a block are computed within this period. This allows the DSP
subsystem to read the last block of incoming audio samples and to
deliver the next block of outgoing samples in time to the output.
The minimum delay of the logical timing between the input and
the output of a Gabor application corresponds to the block size of
the MSP signal processing engine. The actual delay corresponds
to the size of vectors cut out of the input stream rounded to up the
nearest multiple of the DSP block size.

The actual source of time and synchronisation for the MSP
audio processing as for any similar signal processing program, is
the underlying audio system or more precise the clock of the ADC
and DAC converters. In this way, Max/MSP, as many other ap-
plications, is more or less loosely synchronised depending on the
size of the i/o buffers used by the audio drivers and the Max/MSP
audio interface. Max provides the signal processing block size and
the audio i/o buffer size as two different parameters.

These temporal aspects of the Max/MSP scheduling have to
be taken into account when Gabor is controlled by external input.
In this scenario, the audio stream has to be synchronized with ex-
ternal input streams such as OSC (Open Sound Control) [19] or
MIDI. Current efforts in the development of FTM target the inte-
gration of OSC allowing for the transmission of streams of vectors
as used by Gabor with an exact reconstitution of the temporal as-
pects such as frequency, texture and rhythm at the reception [1].

DAFX-4



Proc. of the 8th Int. Conference on Digital Audio Effects (DAFx’05), Madrid, Spain, September 20-22, 2005

4. MEMORY AND PERSISTENCE: RECORDING,
SAMPLING AND SDIF

The transformation of a continuous stream of samples to a stream
of events within the Gabor modules associates each vector to a pre-
cise instant of time transforming continuity of the original stream
to a new continuity of a stream of events. The grains, wave periods
or frames processed by the Gabor modules can be calledatomicin
the sense of being treated each as asingle event. The internal tem-
poral development of a vector is conserved by its indices regarding
the current sample rate.

In analogy to usual audiodelay lines, samplersandsound file
players, a number of interesting applications use the possibility
of recording a stream of vectors and replaying it later. Usually
the FTM classtrack is used as a generic container of streams of
vectors. In fact, a track can contain a time-tagged sequence of any
kind of events or messages. Several modules are provided to delay,
record and replay sequences of events in different ways using an
FTM track object. Other modules allow for reading the track data
at arbitrary positions, speed and direction, interpolating successive
vectors or matrices.

Delay lines and recording buffers can be inserted at any stage
of a complex analysis/synthesis algorithm built with Gabor in a
modular way. Multiple synthesis processes can use the same data
previously analyzed in real-time or imported from a file. Analysis
data can be recorded in real-time and exported to a file.

The FTMtrackclass allows for importing and exporting SDIF2

files [16]. This way data can be exchanged with other analysis,
editing and processing applications such asAudiosculptandOpen-
Music.

5. CONCLUSIONS

Gabor provides a novel approach to modular signal processing. It
combines various vector based signal processing algorithms in a
unified framework using an event processing model. Gabor inte-
grates easily with the Max/MSP graphical programming paradigm
and explores the possibilities of this approach in a coherent set of
modules.

Granular synthesis, PSOLA, additive synthesis and the phase
vocoder are well established and distinguished techniques of audio
processing. All these techniques are clearly interrelated in terms
of their granularity of calculation and provide partly similar partly
complementary possibilities of sound analysis, transformation and
synthesis. Using Gabor these techniques can be easily combined.

Additional new impulses for sound synthesis applications are
awaited from the integration of Gabor with other libraries based on
FTM. The MnM library provides modules for linear vector algebra
and statistical models [6]. Further efforts in the framework of the
FTM project target the integration of data base access and content
based processing.

The Gabor modules are freely available within the FTM dis-
tribution for Max/MSP athttp://www.ircam.fr/ftm .

6. ACKNOWLEDGEMENTS

We first of all have to acknowledge the researchers at IRCAM
who contributed to the various algorithms meeting in the Gabor
library and who provided vivid support for their implementation,

2http://www.ircam.fr/sdif/

especially Xavier Rodet for the FFT-1 addtiive synthesis, Geoffroy
Peeters for PSOLA, Alain de Cheveign for Yin and Axel Röbel for
the phase vocoder. Further on we’d like to thank the other mem-
bers of the Real-Time Applications Team, Riccardo Borghesi and
Frederic Bevilacqua as well as Remy Muller and Patrice Tisserand
for their friendship and daily inspiration for the FTM project Ga-
bor is part of.

7. REFERENCES

[1] E. Brandt and R. Dannenberg. Time in Distributed Real-
Time Systems. InICMC, Beijing, China, 1999.

[2] Alain de Cheveign and Hideki Kawahara. YIN, a Funda-
mental Frequency Estimator for Speech and Music.JASA,
111:1917–1930, 2002.

[3] Mark Dolson. The phase vocoder: A tutorial.Computer
Music Journal, 10(4):14–27, 1986.

[4] F. Dechelle et al. jMax: a new JAVA-based editing and con-
trol system for real-time musical applications. InICMC, Ann
Arbor, Michigan, 1998.

[5] N.Schnell et al. FTM — Complex Data Structures for
Max/MSP. InICMC, Barcelona, Spain, 2005.

[6] R. Muller F. Bevilacqua and N. Schnell. MnM: a Max/MSP
mapping toolbox. InNIME, Vancouver, Canada, 2005.

[7] Dennis Gabor. Theory of communications.Journal of the
Institution of Electrical Engineers, 93(3):429–457, 1946.

[8] Dennis Gabor. Acoustical Quanta and the Theory of Hearing.
Nature, 159(4044):591–594, 1947.

[9] J. Laroche and M. Dolson. New Phase Vocoder Technique
for Pitch-Shifting, Harmonizing and Other Exotic Effects. In
IEEE Workshop on Applications of Signal Processing to Au-
dio and Acoustics, Mohonk, New Paltz, New York, 1999.

[10] G. Peeters et al. N. Schnell. Synthesizing a choir in real-time
using Pitch-Synchronous Overlap Add (PSOLA). InICMC,
Berlin, Germany, 2000.

[11] M. Puckette. Pure Data. InICMC, pages 269–272, Hong
Kong, 1996.

[12] M. Puckette. Max at seventeen.Computer Music Journal,
26(4):31–43, 2002.

[13] Curtis Roads.Microsound. The MIT Press, Cambridge, Mas-
sachusetts, 2002.

[14] X. Rodet and P. Depalle. Spectral Envelopes and Inverse
FFT Synthesis. InProceedings of the 93rd Convention of the
Audio Engineering Society, AES, New, York, 1992.

[15] Axel Roebel. Transient detection and preservation in the
phase vocoder. InICMC, Singapore, 2003.

[16] D. Schwarz and M. Wright. Extensions and Applications of
the SDIF Sound Description Interchange Format. InICMC,
Berlin, Germany, 2000.

[17] Diemo Schwarz and Xavier Rodet. Spectral Envelope Esti-
mation and Representation for Sound Analysis-Synthesis. In
ICMC, Beijing, China, 1999.

[18] B. Truax. Real-time granular synthesis with a digital signal
processor.Computer Music Journal, 12(2):14–26, 1988.

[19] M. Wright and A. Freed. Open Sound Control: A New Proto-
col for Communicating with Sound Synthesizers. InICMC,
Thessaloniki, Greece, 1997.

DAFX-5


