
ICMC 2004 - D. Schwarz, N. Orio, N. Schnell - Robust Polyphonic Midi Score Following with Hidden Markov Models

Robust Polyphonic Midi Score Following with Hidden Markov Models

Diemo Schwarz, Nicola Orio, Norbert Schnell
schwarz@ircam.fr, orio@dei.unipd.it, schnell@ircam.fr

Ircam - Centre Pompidou, 1 pl. Igor Stravinsky, 75004 Paris, France
University of Padova, Dept. of Information Engineering, Via Gradenigo 6/B, 35131 Padova, Italy

Abstract
Although modern audio score following systems work very
well with low polyphony performances, they are still too im-
precise with highly polyphonic instruments such as the piano,
or the guitar. On the other hand, these instruments can easily
output Midi information which shows that our work on robust
Midi score following is still needed. We propose an adapta-
tion to Midi input of our HMM-based stochastic audio score
follower, focusing the attention on the piano as our test instru-
ment. The acoustic salience of the Midi notes is modeled by
an amplitude envelope, taking into account the sustain pedal,
from which note match and attack probabilities are derived.
Tests with a complex piano piece played with many errors
showed a very high robustness.

1 Introduction
Score following is the synchronisation of a computer that

provides an accompaniment (audio synthesis or sound pro-
cessing) to a human performer who plays a known musical
score. It has a history of about twenty years as a research
and musical topic (see Orio, Lemouton, Schwarz, and Schnell
(2003) for an overview), and is an ongoing project of Ircam’s
Real-Time Applications Team (ATR 2004). Research is still
very active in this area, see for example the various recent
approaches proposed by Loscos, Cano, and Bonada (1999),
Raphael (1999), Orio and Déchelle (2001), Shalev-Shwartz
et al. (2002), Izmirli, Seward, and Zahler (2003). Early pro-
totypes of score followers were based on Midi instruments, or
relied on pitch-to-Midi converters. For this reason, the typi-
cal application of a score follower was the accompaniment of
a monophonic instrument. More recent score followers di-
rectly use the audio signal as their input, without requiring
pitch detection, and thus can cope with slightly polyphonic
performances, for instance chords played on a violin.

Instruments capable of high polyphony, like the piano, the
organ, and the guitar, are still too difficult for audio score fol-
lowing. Yet, Midi output can be easily obtained from these
instruments by adding converters. In an inversion of the his-
torical development, we propose a Midi follower that is an
adaptation of our audio score following system (Orio and
Déchelle 2001), where audio input is replaced by an acoustic

salience measure predicted from Midi input, the methodology
for on-line alignment being unchanged. Midi score follow-
ing of highly polyphonic performances introduces a number
of interesting problems which have not yet been addressed
in sufficient depth, neither on the score nor the performance
modeling side.

As for all approaches to score following, the system re-
quires a model of the musical score performed by the musi-
cian, which is built from an external score coding and prepro-
cessed to deal with polyphonic performances (section 2). In
parallel, the system needs to model the Midi performance in
order to match it to the score (section 3). Alignment is then
carried out using a statistical approach (section 4), the advan-
tages of which are the possibility to train the system and to
model different features from examples of performances and
scores. The widely used Hidden Markov Models (HMMs)
can deal with the several levels of unpredictability typical of
performed music. We tested our system on a real situation,
using La Frontière by Philippe Manoury as our test case (sec-
tion 5).

2 Score Modeling
The internal score model is built by parsing an external

score file, which is not straightforward in the polyphonic case.
As implicitly introduced in (Orio and Schwarz 2001), the re-
sult of the score parsing is a time-ordered sequence of score
events at every change of polyphony, i.e. at each note start
and end, as shown in figure 1. The score states are created
between the score events. Rest states are created when the
polyphony is zero.

Many score files, especially those generated by recording
a Midi-performance, contain score events with slight desyn-
chronisations: For instance, the notes of a chord played on a
keyboard are in general not triggered perfectly synchronous,
but are slightly arpeggiated (figure 2). Equally, notes that
should be played with a legato articulation can have short
overlap or gaps (figure 3). To avoid generating too many
very short states, a quantisation is performed that fuses score
events within a window of 30 ms into one single event, and
eliminates rests shorter than 100 ms altogether. The result is

1

ICMC 2004 - D. Schwarz, N. Orio, N. Schnell - Robust Polyphonic Midi Score Following with Hidden Markov Models

1000 200 300

monophonic state polyphonic state rest state

Figure 1: Score parsing into score events and the score states
between them.

0 100 200 300

Figure 2: Desynchronised chord

that all circled events in figures 2 and 3 are moved to the time
of the earliest event for each circle.

Each polyphonic event is then described by the notes that
are expected to be alive in the corresponding score state: We
refer to the set of score notes at state i with symbol S(i).
Moreover, each event may have a number of notes that are
expected to start at the beginning of the corresponding state:
We refer to the set of expected attacking notes of state i with
symbol A(i).

Non-note objects with a special interpretation can be spec-
ified in the score: trills are modeled as one score state, and
rests can be explicitly given in the score in order to assign
them a cue, i.e. a label to be output to trigger some action.

3 Performance Modeling
A naive interpretation of the Midi input as a gate signal (a

note is alive or not) is sufficient for purely monophonic mu-
sic, but presents severe disadvantages for highly polyphonic
piano music, due the use of the sustain pedal: First, sustained
notes can be obtained with the pedal or without, depending on
the musician. To ignore the pedal and treat only note-on and
note-off messages is not possible because of this ambiguity
which leads to score–performance mismatch. Second, a long
part with constantly held pedal will produce a very high Midi
polyphony, although most of the notes are no longer audible.

The solution is to take into account the acoustic promi-
nence of a played note by simulating its audio envelope by an
exponentially decaying “energy” curve (we use the term en-
ergy in this sense from now on) with the two stages of decay
and release. This solves a third problem of very short notes in
arpeggiated chords that would only match partly because the
notes are not present long enough to overlap completely.

At the start of an incoming Midi note with pitch n, its
energy e(n) is set to one. After each update period (tick) of τ ,
the energy is multiplied by a decay factor dd while the note is
on, and a release factor dr after note off. The two factors can

0 100 200 300

Figure 3: Desynchronised legato notes

0

0.5

1

λ
d note off

λ
r

Time

E
ne

rg
y

Figure 4: Modeling of the “energy” curve of a Midi note.

be specified by half-life, i.e. the time λ required for reducing
the energy to half of its initial value as shown in figure 4. The
decay factor dd is given by

dd = 2
− τ

λd

analogously, dr is given by the release half-life λr.
Based on this energy, we can define a note match mn

where the current performance notes are compared to the ex-
pected notes from the score: For each expected note s in S(i),
sum their energy, and normalise by the sum of the energy of
all alive performance notes p as E =

∑

p e(p).

mn =

{
�

s∈S(i) e(s)

E
if E > 0

0 otherwise

The attack match ma helps being faster in the detection
of arpeggiated chords, where the full note match is reached
only when all notes have arrived. It is given by comparing
the alive performance notes with the set of notes A(i) that are
expected to attack, normalised by their number ||A(i)||:

ma =

{

�
a∈A(i) e(a)

||A(i)|| if ||A(i)|| > 0

0 otherwise

4 HMM-based Score Following
To use Hidden Markov Models for score following, we

identify the observation sequence with the features extracted
from the performance (the match values defined in section 3),
and the state sequence with the score. Orio and Déchelle
(2001) introduced a two-level model, which distinguishes be-
tween a low-level note model (section 4.1), and a high-level
score model (section 4.3). They also proposed a real time de-
coding algorithm (section 4.4), differing from the standard
HMM Viterbi decoding, that tells us which HMM state is
aligned with the current performance frame.

2

ICMC 2004 - D. Schwarz, N. Orio, N. Schnell - Robust Polyphonic Midi Score Following with Hidden Markov Models

4.1 Note Model
The low-level models the score states, which are either

a group of notes or a rest. Each of these note models is a
left-to-right HMM consisting of three different kinds of low-
level states, as depicted in figure 5. A single attack state a,
which emits features related to the attack modeling. A se-
quence of sustain states s, which share the same emissions of
features related to note modeling. Their number n and self-
transition probability p model the expected duration of the
state. A single release state r, which emits features related to
the silence or rests and which can be skipped to accommodate
legato playing.

It is assumed that observations, that is the parameters ex-
tracted from the Midi performance, are emitted only by the
low-level states, according to the observation likelihoods de-
scribed in the following section.

releaseattack sustain

Figure 5: One note model with its low-level states.

4.2 Observation Likelihoods
The HMM’s observation likelihoods are given by proba-

bility density functions (PDFs), which essentially perform a
mapping from one of the features described in section 3 to a
probability of a low-level HMM state of type attack or sustain
or rest. We use thresholded exponential probability density
functions (TEPDFs), shown in figure 6, instead of Gaussian
because they better model the features we encounter.

0

0.5

1

θ

µ=0.1
µ=0.2
µ=0.5
µ=1.0

Figure 6: Thresholded exponential probability density func-
tion for upper threshold θ and various values of µ.

The note match probability Pmn is given directly by the
note match mn. We derive the probability of attack with the
definition of a normalised upper-threshold exponential PDF:

Pattack =

{

e−
θa−ma

µa if ma > θa

1 otherwise

and the probability of sustain as the Gaussian PDF

Psustain = e−(ma−θs
µs

)
2

The values used for our experiments are τ = 5 ms, θa = 0.8,
which corresponds to 2 ticks with the default half-life of
λd = 500 ms, µa = 0.3, θs = 0.7 (4 ticks), µs = 0.3, and
θr = 0.1, µs = 0.4, λr = 100 ms.

The final observation likelihoods Ox for the low-level state
classes are combined from the note match and the attack/sus-
tain probabilities, and the rest probability is derived by a lower-
TEPDF from the total energy E:

Oa = PmnPattack

Os = PmnPsustain

Or =

{

e−
E−θr

µr if E > θr

1 otherwise

4.3 Score Model
For each event in the score (as defined in section 2), a note

model is created. We call each of these models a high-level
state. The high level is mostly conceptual and helps us to
more easily express a topology for the score modeling.

Together with the sequence of events in the score, which
have temporal relationships that are reflected in the left-to-
right structure of the HMM, also possible performance mis-
matches are modeled. As introduced by Dannenberg (1984),
there are three possible errors: wrong notes, skipped notes,
or inserted notes. The model copes with these errors by intro-
ducing error states, or ghost states, that model the possibility
of a wrong event after each event in the score. Figure 7 shows
the possible paths for a correct performance (a) and the three
possible errors wrong event (b), skipped event (c), where the
model has to wait for the next correct event to resynchronise
itself to distinguish a skipped note from a wrong note, and
extra event (d). Only one ghost state is shown for clarity.

t-1 t+1 t+2tn-states

g-state t

t-1 t+1 t+2tn-states

g-state t

t-1 t+1 t+2tn-states

g-state t

t-1 t+1 t+2tn-states

g-state t

(a)

(c)

(b)

(d)

Figure 7: High-level states with different possible errors.

4.4 Decoding
The decoding of the HMM states tells us for each per-

formance frame which state is most probable to be aligned
with this frame. The proposed approach is different from
the standard Viterbi algorithm, which is not suitable for real-
time score following. In particular, as introduced by Orio
and Déchelle (2001), at each time t the system computes, for

3

ICMC 2004 - D. Schwarz, N. Orio, N. Schnell - Robust Polyphonic Midi Score Following with Hidden Markov Models

each low-level state q, the probability of being the last state
of a path inside the HMM given the observations o(1) . . . o(t)
until time t. This correspond to the computation of the for-
ward variables αi(t), as described by Rabiner (1989). The
most probable alignment between the score and the perfor-
mance at time t is then computed by the simple maximisation
q̂ = argmaxq P (q, o(1) . . . o(t)), and the synchronisation is
achieved by finding the score event i that contains state q̂.

4.5 Training
In the context of our HMM score follower, training means

adapting the various probabilities and probability distribu-
tions governing the HMM to one or more example perform-
ances such as to optimise the quality of the follower. At least
two different things can be trained: the transition probabil-
ities between the states of the Markov chain, and the PDF
parameters of the observation likelihoods. In our case, the
transition probabilities were trained by generating perform-
ances with errors, and adapting the transitions so that a good
balance between speed of recognition and robustness to er-
rors was reached. The observation probabilities defined in
section 4.2 are quite simple in nature for our case, such that
the PDF parameters can be set by hand.

5 Results and Conclusion
Tests with simple scores work perfectly well, even in the

presence of errors, where the follower waits in the ghost states
for the next known notes.

Our real-world test case was Philippe Manoury’s cham-
ber opera La Frontière for piano, electronics, and orchestra.
Fortunately, during the first tests, the piano player was not
yet familiar with the score, which provided us with many
welcome performance errors, ranging from wrong notes to
missed chords, up to complete confusion, where chords from
later in the score were inserted.

These tests show a very robust performance of the fol-
lower, an example of our informal evaluation view is given in
figure 8. We can see the desynchronisation of chords and
many wrong notes, despite which the follower reacts very
quickly. Even for the very off cases, the follower would
not get lost but resynchronise itself at the next known chord
in context.

There are still some problems that require further work. In
particular, the preciseness of the following depends on the re-
lationship between the expected tempo and the actual tempo
of the performance. We are working on a more complex mod-
eling of events durations, which takes into account different
modeling of fast and medium-slow events. Problems of dif-
ferent timing becomes crucial when the score is based on the
fast repetition of the same note, because in this case the sys-
tem does not have other clues to state the actual position in
the score other than modeling the tempo.

Figure 8: Score following run-time visualisation: vertically
aligned chords of grey score notes with begin/end tick marks
are overlaid over short black played notes.

The system is running on jMax and Max/MSP with FTM
(Faster Than Music) (ATR 2004), and it will be used in future
productions at Ircam.

6 Acknowledgements
We’d like to thank Philippe Manoury and Serge Lemouton

for their support and our reviewers for their helpful remarks.

References
ATR (2004). Real-Time Applications Team/Équipe Applications

Temps-R éel, Ircam—Centre Pompidou. Web page. http://
www.ircam.fr/equipes/temps-reel

Dannenberg, Roger B. (1984). An On-Line Algorithm for Real-
Time Accompaniment. In ICMC, pp. 193–198.

Izmirli, O., R. Seward, and N. Zahler (2003). Melodic pattern
anchoring for score following using score analysis. In Proc.
ICMC, Singapore.

Loscos, A., P. Cano, and J. Bonada (1999). Score-Performance
Matching using HMMs. In ICMC, Beijing, pp. 441–444.

Orio, Nicola and François D échelle (2001). Score Following Us-
ing Spectral Analysis and Hidden Markov Models. In ICMC,
Havana.

Orio, Nicola, Serge Lemouton, Diemo Schwarz, and Norbert
Schnell (2003). Score Following: State of the Art and New
Developments. In New Interfaces for Musical Expression
(NIME), Montreal.

Orio, Nicola and Diemo Schwarz (2001). Alignment of Mono-
phonic and Polyphonic Music to a Score. In ICMC, Havana.

Rabiner, Lawrence R. (1989). A Tutorial on Hidden Markov
Models and Selected Applications in Speech Recognition.
Proceedings of the IEEE 77(2), 257–285.

Raphael, C. (1999). Automatic Segmentation of Acoustic Musi-
cal Signals Using Hidden Markov Models. IEEE Trans. Pat-
tern Analysis and Machine Intelligence 21(4), 360–370.

Shalev-Shwartz, Shai, Shlomo Dubnov, Nir Friedman, and
Yoram Singer (2002). Robust temporal and spectral model-
ing for query by melody. In ACM SIGIR Conference on Re-
search and Development in Information Retrieval, pp. 331–
338.

4

