
SCALABILITY IN CONTENT-BASED NAVIGATION OF SOUND DATABASES

Diemo Schwarz, Norbert Schnell, Sebastien Gulluni

Ircam – CNRS STMS, Paris, France

ABSTRACT

The article presents methods for sound search in large
effects or instrument sound databases by interactive content-
based navigation in a space of descriptors and categories,
based on the principle of real-time corpus-based concatenat-
ive synthesis. We focus on three algorithms: fast similarity-
based search by a kD-tree in the high-dimensional descriptor
space, a mass–spring model with added repulsion for layout,
and efficient dimensionality reduction for visualisation by
hybrid multi-dimensional scaling based on these. Special at-
tention is given to scalability to very large databases by per-
formance evaluations and measurements. The algorithms
are implemented and tested as C-libraries and Max/MSP ex-
ternals within a prototype sound exploration application.

1. INTRODUCTION

Sound databases with instrumental or environmental sounds
and sound effects are a vital resource for sound design, film
and multi-media production, and music creation. The num-
ber and size of commercially available sound effects data-
bases, such as Hollywood Edge, Sound Ideas, instruments
or loops collections, and of community-driven on-line col-
lections like freesound are growing steadily1, with rising
network bandwith, growing harddisk capacity, and falling
prices for storage and distribution media accelerating this
growth even further.

From a certain scale onwards, the practical problem in
the exploitation of these databases is no longer the ques-
tion whether a specific sound exists in the database, but how
to find it. In a user survey conducted within the Sample-
Orchestrator project2, professional film sound designers re-
ported about their practice of collecting the soundtracks of
the rushes, i.e. the raw, unedited footage shot during the
making of a film, to augment their collection of ambiences,
reaching the mark of 1 TB of sound data, and their difficulty
of finding one specific event in many long recordings with
tools not adapted to such large sizes. They get by with disci-
plined use of manually edited metadata, and navigate by the
audio waveform displayed in a sound browsing application.

Our contribution to alleviating the problems of finding
the right sound in a mass of unstructured recordings is inter-
active navigation with immediate audio feedback in a space
of sound descriptors populated by sound segments. This ap-
proach greatly speeds up the usual workflow of hierarchical

menu or search mask, result list, and play/stop buttons that
put many mouseclicks between the user’s idea of the sound
and listening to appropriate contents of the database.

In our prototype application [10], we replaced the menu-
and list-driven interface with a 2D representation of a sound
and category space. While navigating through the space, the
sound segments close to the current position are immedi-
ately played. Playing is layered if movement is fast, so that
large parts of the sound space can be explored rapidly. The
strong interactivity enables the user to quickly understand
the dimensions and areas of the presented space by probing
sound snippets that are played as they are passed by.

This principle of navigation poses tougher requirements
on the efficiency of the underlying algorithms, and on their
scalability to very large databases. The article will concen-
trate on the two aspects of fast similarity-based search and
the efficiency of low-dimensional embedding of the high-
dimensional descriptor and category space3 for visualisa-
tion, with special attention to scalability.

We chose and improved three algorithms: the kD-tree
search algorithm (section 3), the simulation of a mass–
spring–damper (MSD) system (section 4), and the hybrid
multi-dimensional scaling algorithm for dimensionality re-
duction, that combines both of the previous (section 5).
These algorithms are implemented and tested as C-libraries
and Max/MSP externals as detailed in section 6.

2. RELATED WORK

The navigational approach to sound search has been in-
spired by interactive real-time corpus-based concatenative
synthesis for musical creation [9, 8]. This method permits
to create music by selecting snippets of a large database of
pre-recorded sound by navigating through a two- or higher-
dimensional space where each snippet takes up a place ac-
cording to its sonic character, such as pitch, loudness, bril-
liance. The selected units are concatenated and played, after
possibly some transformations. The method can be seen as a
content-based extension to granular synthesis providing di-
rect access to specific sound characteristics. Evidently, the

1. Since its start in 2005, http://freesound.org almost doubled every
year to 62701 sounds, 681 hours, 252 GB in Februray 2009.

2. http://www.ircam.fr/306.html?&L=1
3. For our tests, we used up to 229 sound descriptors analysed by the

external programs IrcamDescriptors and IrcamClassifier, partly referenced
in [7], but any set of descriptors and data can be imported.

http://freesound.org
http://www.ircam.fr/306.html?&L=1

high interactivity of real-time CBCS is directly applicable
to the exploration of the sounds in the corpus with the aim
of searching sounds.

Related work in Music Information Retrieval start to
apply graphical interfaces to content-based audio searches
[1, 12] inspired by our work [8], or are concerned with the
efficiency of nearest neighbour search [5, 2] or the recent
method of locality-sensitive hashing (LSH) [11].

3. EFFICIENT NEAREST NEIGHBOUR SEARCH
WITH kD-TREES

In any content-based retrieval application, the most recur-
ring problem is to find the database entries most similar to
a given target specification, even more so if the search is
by interactive navigation through the database. In our case,
the problem of finding the sound segment closest to a target
point xt in the multi-dimensional descriptor space is solved
efficiently by a branch and bound search algorithm based on
the tree-structured index provided by the kD-tree, represent-
ing a hierarchical decomposition of the descriptor space.

During search, whole subtrees are pruned, i.e. discarded
from the search, by applying an elimination rule based on
the farthest neighbour found so far. This removes a large
amount of the distance calculations between vectors needed
otherwise, resulting in a sublinear time complexity. Several
variants of the algorithm are compared in [2], and it is ar-
gued that the best decomposition is along the hyperplanes
orthogonal to the principal components, since it maximises
the distance among the points in different subtrees and thus
the probability that a subtree can be pruned.

In the following, we present the algorithms for building
and searching the kD-tree structure, with tree node n span-
ning the data vector indices from pn to qn.

BUILDTREE(X = {x0, . . . ,xN−1})
1 p0← 0 — node 0 contains all data vectors
2 q0← N−1
3 for 0≤ l < height−1
4 for 2l −1≤ n < 2l+1−1
5 DECOMPOSENODE(n, l)
6 i← pn
7 j← qn
8 while i < j — sort node vectors
9 while distV 2N(xi,n)≤ 0

10 i← i+1
11 while distV 2N(x j,n) > 0
12 j← j−1
13 if i < j then
14 SWAP(i, j)
15 end
16 p2n+1← pn — left child of node n
17 q2n+1← j
18 p2n+2← i — right child of node n
19 q2n+2← qn

The DECOMPOSENODE(n, l) function calculates the
split plane of node n at level l, defined by an orthogonal
vector sn and going through a point µn = 1

qn−pn+1 ∑
qn
k=pn

xk,
that is the mean of the node’s elements. This plane is
used in the vector-to-node distance function distV 2N(x,n) =
(x− µn)/σ · sn based on the dot product. Ideally, sn is the
principal component vector of the node, but choosing it or-
thogonal to the axis of the dimension with the greatest vari-
ability results in an almost equally efficient search with less
overhead for the decomposition.

The search algorithm uses a stack of nodes to be visited
and the distance d of the target point xt to the node’s split
plane in order for the elimination rule to prune child nodes
when no vector closer than the current nearest neighbours
can be found. It starts at node 0, which spans the whole
tree, with d = 0.

SEARCHTREE(xt ,k,r)
1 for 0≤ i < k do disti← r
2 kmax← 0
3 PUSH(0,0)
4 while stack is not empty
5 (d,n)← POP()
6 if d ≤ distkmax then
7 if n≥ 2height−1−1 then — leaf node
8 for pn ≤ i≤ qn — search through vectors linearly
9 dxx← distV 2V (xt ,xi) — vector to vector distance

10 if dxx≤ distkmax then
11 indkmax← i — indices of nearest neighbours
12 distkmax← dxx
13 kmax← argmax

0≤ j<k
∧

dist j<r
dist j

14 else — branched node
15 dxn← distV 2N (xt ,n)
16 if d < 0 then
17 PUSH(2∗n+2, max(d,dxn))
18 PUSH(2∗n+1, d)
19 else
20 PUSH(2∗n+1, max(d,dxn))
21 PUSH(2∗n+2, d)
22 else d > distkmax — node can be eliminated from search
23 return (ind,dist)

The radius parameter r limits the returned nearest neigh-
bours to lie within distance r from xt . If r = ∞ all k near-
est neighbours are returned. Note that both distance func-
tions distV 2N and distV 2V (x,y) = (x− y)/σ can include per-
descriptor-weights in σ that balance the influence of each
dimension in the search, even after the tree index is built.

The performance measurements on uniformly distributed
random data of size N and 106 random target points in fig-
ure 1 show the logarithmic time complexity of search (upper
row), linear complexity for building (lower left), and the ex-
ponential influence of the number of dimensions D (lower
right). However, even the worst single search time is just
2.2 ms on a 2.53 GHz Intel Core 2 processor; an initial over-
head over linear search is quickly passed by with N > 100.

 0k 200k 400k 600k 800k 1000k
0

5

10

15

20

Database size N (large scale)

R
un

 ti
m

e
fo

r 1
06 N

N
 s

ea
rc

he
s

[s
]

D=2
D=3
D=4

10
2

10
3

10
4

10
5

0

1

2

3

4

5

Database size N (medium logarithmic scale)

R
un

 ti
m

e
fo

r 1
06 N

N
 s

ea
rc

he
s

[s
]

D=2
D=3
D=4

 0k 200k 400k 600k 800k 1000k
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Database size N (large scale)

R
un

 ti
m

e
fo

r o
ne

 k
D

−t
re

e
bu

ild
 [s

]

D= 1
D= 2
D= 3
D= 4
D= 5
D= 6
D= 7
D= 8
D= 9
D=10

1 2 3 4 5 6 7 8 9 10

10
1

10
2

10
3

Number of dimensions D

R
un

 ti
m

e
fo

r 1
06 N

N
 q

ue
rie

s
[s

]

N=103

N=104

N=105

N=106

Figure 1. kD-tree performance measurements.

4. MASS–SPRING–DAMPER–REPULSION MODEL

Turning to the visualisation of sounds as points in a graphi-
cal interface, a useful model is the simulation of a system of
masses connected by springs (or, more generally, by links).
This model is the heart of the dimensionality reduction al-
gorithm explained in section 5, but it can already be applied
to an existing projection on two or three dimensions of a
sound database for two purposes: First, it allows to inter-
actively move displayed sounds with neighbouring sounds
following, in order to organise the sound space. Second, the
repulsion force that has been added in our implementation
avoids overlapping points by pushing them apart.

The model is following MSD [3] but using an inert
model for faster convergence and to avoid self-oscillating
systems of masses. The physics model is given according to
the implicit discretisation scheme (for the differential equa-
tions, see [3]). First, for each link between the masses at
positions xm1

n and xm2
n , the force Fn+1 for step n+1 is calcu-

lated (each time step has an implicit duration of 1):

dn = |xm1
n − xm2

n | (1)

Fn+1 = K (dn−L)+ µ (dn−dn−1)+R max
(

0, 1− dn

LR

)
(2)

where L is the nominal length of the link, K is the stiff-
ness parameter depending on the stress dn − L, and µ is
the viscosity damping, depending on the change in length
dn−dn−1. Repulsion takes place when the distance is lower
than a threshold LR and rises linearly up to R. Force Fn+1 is
along the link vector, and is added to the two masses’ force
vectors, negative for m1, positive for m2, in the direction of
the link, and friction damping ηvmi

n is opposed to the veloc-
ity of mass mi. This force is then applied to each masses

position xn+1 and the speed vn+1 is updated:

xn+1 =
Fn+1

M
+ xn (3)

vn+1 = xn+1− xn (4)

The effect of the repulsion force can be seen in figure 2,
where a cluster of overlapping points is distributed in space
to reveal all sounds.

Figure 2. Effect of repulsion (right) on a cluster (left).

5. HYBRID MULTI-DIMENSIONAL SCALING

For the low-dimensional visualisation of a high-dimensional
space, the Chalmers algorithm [4] uses a mass–spring model,
where the nominal spring lengths are given by the distance
in the high-dimensional data space. The basic assumption
is that the final minimal stress configuration, to which the
model will converge, corresponds to a good layout, where
points that are close in data space are also close in layout
space. An additional advantage is that the algorithm is itera-
tive such that the successive configurations can be displayed
to the user while the system converges.

Our improved hybrid algorithm consists of three phases:
1. Initialisation: A random sample of nsamp =

√
N points is

laid out with a fully-connected mass–spring model, to pro-
vide a good starting layout for faster convergence. 2. In-
terpolation: The remaining points are placed around their
nearest neighbour from data space. 3. Iteration: The placed
points are laid out with a mass–spring model where nngb
links are kept to the nearest neighbours in order to keep them
together, and nrand links are randomly chosen at each itera-
tion, in order to move the global shape.

The choice of nsamp means that each iteration in the ini-
tialisation phase is linear, since a fully connected system
takes O(n2

samp) = O(N). For interpolation, previous work
[4] achieved a complexity of O

(
N5/4

)
by pivot-based near-

est neighbour search. Here we can apply our kD-tree-based
search, reducing the complexity to O(N logN): Our im-
proved interpolation stage places the point at the mean po-
sition between the 3 nearest neighbours. The final iterations
are sublinear, with a constant number nngb +nrand of links to

be evaluated, and few iterations are necessary until the total
stress reaches a minimum.

6. IMPLEMENTATION

The algorithms described here are implemented as C-
libraries and as externals within the FTM&CO. exten-
sion library [6] at http://ftm.ircam.fr for MAX/MSP and
PUREDATA, taking advantage of FTM’s real-time optimised
data structures such as matrices and dictionaries. This al-
lowed the rapid building of prototypes to test the search-by-
interaction paradigm. An example sound navigation inter-
face is shown in figure 3 and further described in [10].

Figure 3. Screenshot of the sound navigator prototype.

7. CONCLUSION

We described three algorithms that are crucial for interactive
navigation-based search in large sound databases, and their
improvements, performance and implementation. First, the
efficient logarithmic-time kD-tree search algorithm, where
we added the limitation to a search radius, and weights for
the descriptors. Second, the mass–spring–damper model
for intuitive layout optimisation of points in a 2D inter-
face, where we added repulsion. Third, the hybrid multi-
dimensional scaling algorithm for dimensionality reduction
for visualisation, is based on the MSD model, and the use of
the kD-tree speeds up the initialisation, allows more precise
pre-placement, and thus faster convergence.

All three algorithms together make the paradigm of in-
teractive sound search by navigation scalable to very large
sound databases. The prototype application contains other
innovations and facilities in the user interface, such as class
filters and a multi-grid visualisation, to organise search in
large databases of audio descriptors and categories, that are
described in an accompanying article [10].

8. ACKNOWLEDGEMENTS

The research presented here is partially funded by the
French National Agency of Research ANR within the RIAM
project Sample Orchestrator. The authors would like to
thank the project partners for their fruitful collaboration, and
Joel Bensoam and Bram de Jong for invaluable assistance.

9. REFERENCES

[1] G. Coleman, “Mused: Navigating the personal sample
library,” in Proc. ICMC, Copenhagen, Denmark, 2007.

[2] W. D’haes, D. van Dyck, and X. Rodet, “PCA-based
branch and bound search algorithms for computing
K nearest neighbors,” Pattern Recognition Letters,
vol. 24, no. 9–10, 2003.

[3] N. Montgermont, “Modèles physiques particulaires en
environnement temps-réel : Application au contrôle
des paramètres de synthèse,” MSc Thesis (DEA
ATIAM), University of Paris 6, 2005.

[4] A. Morrison and M. Chalmers, “Improving hybrid
MDS with pivot-based searching,” in IEEE Symposium
on Information Visualization, 2003, p. 11.

[5] P. Roy et al., “Exploiting the tradeoff between pre-
cision and CPU-time to speed up nearest neighbor
search,” in ISMIR, London, UK, 2005.

[6] N. Schnell, R. Borghesi, D. Schwarz, F. Bevilacqua,
and R. Müller, “FTM—Complex Data Structures for
Max,” in Proc. ICMC, Barcelona, 2005.

[7] N. Schnell, A. Röbel, D. Schwarz, G. Peeters, and
R. Borghesi, “MuBu & friends – assembling tools for
content based real-time interactive audio processing in
Max/MSP,” in Proc. ICMC, Montreal, 2009.

[8] D. Schwarz, G. Beller, B. Verbrugghe, and S. Brit-
ton, “Real-Time Corpus-Based Concatenative Synthe-
sis with CataRT,” in DAFx, Montreal, 2006.

[9] D. Schwarz, “Corpus-based concatenative synthesis,”
IEEE Sig. Proc. Mag., vol. 24, no. 2, Mar. 2007.

[10] D. Schwarz and N. Schnell, “Sound search by content-
based navigation in large databases,” in Sound and Mu-
sic Computing (SMC) (submitted), Porto, Jul. 2009.

[11] M. Slaney and M. Casey, “Locality-sensitive hashing
for finding nearest neighbors,” IEEE Signal Processing
Magazine, vol. 25, no. 2, pp. 128–131, Mar. 2008.

[12] S. Streich and B. S. Ong, “A music loop explorer sys-
tem,” in Proc. ICMC, Belfast, Aug. 2008.

http://ftm.ircam.fr

	1 Introduction
	2 Related Work
	3 Efficient Nearest Neighbour Search with kD-TREEs
	4 Mass--Spring--Damper--Repulsion Model
	5 Hybrid Multi-Dimensional Scaling
	6 Implementation
	7 Conclusion
	8 Acknowledgements
	9 References

