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ABSTRACT

Existing methods for sound texture synthesis are often con-
cerned with the extension of a given recording, while keep-
ing its overall properties and avoiding artefacts. However,
they generally lack controllability of the resulting sound
texture. After a review and classification of existing ap-
proaches, we propose two methods of statistical modeling
of the audio descriptors of texture recordings using his-
tograms and Gaussian mixture models. The models can be
interpolated to steer the evolution of the sound texture be-
tween different target recordings (e.g. from light to heavy
rain). Target descriptor values are stochastically drawn
from the statistic models by inverse transform sampling to
control corpus-based concatenative synthesis for the final
sound generation, that can also be controlled interactively
by navigation through the descriptor space. To better cover
the target descriptor space, we expand the corpus by au-
tomatically generating variants of the source sounds with
transformations applied, and storing only the resulting de-
scriptors and the transformation parameters in the corpus.

1. INTRODUCTION

The synthesis of sound textures is an important application
for cinema, multimedia creation, games and installations.
Sound textures are generally understood as sound that is
composed of many micro-events, but whose features are
stable on a larger time-scale, such as rain, fire, wind, crowd
sounds. We must distinguish this from the notion of sound-
scape, which describes the sum of sounds that compose a
scene, each component of which could be a sound texture.

The many existing methods for sound texture synthe-
sis are very often concerned with the extension of a given
recording to play arbitrarily long, while keeping its overall
properties and avoiding artefacts like looping and audible
cut points. However, these methods lack controllability of
the resulting sound texture. Let’s pose an example, that we
will use throughout the article: A beginning rainfall, that
starts with just a few drops, then thickens, until becoming
heavy rain. Even if we have several recordings of the dif-
ferent qualities of rain at our disposal, the existing methods
couldn’t render the gradual evolution of the rain sound.

To achieve this, we propose a method of statistical mod-
eling of the audio descriptors of texture recordings, that
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can then be used, varied, or interpolated with other mod-
els. Also the steering of the evolution of the generated
sound texture is possible, either by giving a target directly
in terms of audio descriptors, or deriving these from an
existing recording, that couldn’t be used directly, e.g. for
lack of sound quality or match with the rest of the sound
track. Our method is thus strongly based on corpus-based
concatenative synthesis (CBCS) [1, 2], which is a new con-
tribution to the field of sound texture synthesis. The use of
content-based descriptors is also vastly superior to the of-
ten scarce or non-existing meta-data.

CBCS makes it possible to create sound by selecting
snippets of a large database of pre-recorded audio (the cor-
pus) by navigating through a space where each snippet is
placed according to its sonic character in terms of audio
descriptors, which are characteristics extracted from the
source sounds such as pitch, loudness, and brilliance, or
higher level meta-data attributed to them. This allows one
to explore a corpus of sounds interactively or by compos-
ing paths in the space, and to create novel timbral evolu-
tions while keeping the fine details of the original sound.

2. RELATED WORK

We will first give an overview of the existing work in sound
texture synthesis. As a starting point, Strobl et al. [3] pro-
vide an attempt at a definition of sound texture, and an
overview of work until 2006. They divide methods into
two groups:

Methods from computer graphics Transfer of computer
graphics methods for visual texture synthesis applied to
sound synthesis [4, 5, 6].

Methods from computer music Synthesis methods from
computer music or speech synthesis applied to sound
texture synthesis [7, 8, 9, 10, 11].

A newer survey of tools in the larger field of sound de-
sign and composition by Misra and Cook [12] follows the
same classification as we propose in section 2.1 below. The
article makes a point that different classes of sound require
different tools (“A full toolbox means the whole world need
not look like a nail!”).

Filatriau and Arfib [13] review texture synthesis algo-
rithms from the point of view of gesture-controlled instru-
ments, which makes it worthwile to point out the different
usage contexts of sound textures:

There is a possible confusion in the literature about the
precise signification of the term sound texture that is de-
pendent on the intended usage. We can distinguish two
frequently occuring usages:
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Expressive free synthesis Here, the aim is to interactively
generate sound for music composition, performance, or
sound art, very often as an expressive digital musical
instrument (DMI, e.g. in [13] and [14]). Sound texture
is then often meant to distinguish the generated sound
material from tonal and percussive sound.

The methods employed for expressive texture gener-
ation can give rise to naturally sounding textures, as
noted by DiScipio [9], but no systematic research on
the usable parameter space has been done, and it is up
to the user (or player) to constrain herself to the natural
part.

Natural texture resynthesis tries to synthesise textures as
part of a larger soundscape. Often, a certain degree of
realism is striven for (like in photorealistic texture im-
age rendering), but for most applications, either sym-
bolic or impressionistic credible texture synthesis is ac-
tually sufficient, in that the textures convey the desired
ambience or information, e.g. in simulations for urban-
istic planning.

2.1 Classification of Synthesis Methods

It seems most appropriate to divide the different ap-
proaches to sound texture generation by the synthesis
methods (and analysis methods, if applicable) they employ.

Subtractive and additive synthesis, like noise filter-
ing [10, 11, 15] and additive sinusoidal synthesis
[16] are the “classic” synthesis methods for sound
textures, often based on specific modeling of the source
sounds. 1

Physical modeling can be applied to sound texture syn-
thesis, with the drawback that a model must be specif-
ically developed for each class of sounds to synthesise
(e.g. friction, rolling, machine noise) [5, 17], the lat-
ter adding an extraction of the impact impulse sound
and a perceptual evaluation of the realism of synthe-
sised rolling sounds.

Granular synthesis uses snippets of an original
recording, and possibly a statistical model of the
(re)composition of the grains [4, 6, 7, 8, 18, 19].

Corpus-based concatenative synthesis can be seen as a
content-based extension of granular synthesis [1, 2]. It
is a new approach for sound texture synthesis [20, 21,
22]. Notably, Picard [23] uses grain selection driven by
a physics engine.

Non-standard synthesis methods, such as fractal synthe-
sis or chaotic maps, are used most often for expressive
texture synthesis [9, 13, 14].

There are first attempts to model the higher-level
behaviour of whole soundscapes [24], and by using
graphs [25, 26].

1 One venerable attempt is Practical Synthetic Sound Design by Andy
Farnell at http://obiwannabe.co.uk/tutorials/html/tutorials main.html.

2.2 Analysis Methods for Sound Textures

Methods that analyse the properties of sound textures are
rare, some analyse statistical properties [4, 18, 27, 28],
some segment [29] and characterise the source sounds by
wavelets [7], and some use adaptive LPC segmentation
[30]. Only corpus-based concatenative synthesis methods
try to characterise the sonic contents of the source sounds
by audio descriptors [1, 2, 20, 21, 31].

3. DESCRIPTOR-BASED SOUND TEXTURE
SAMPLING

In order to reproduce a given target sound texture, either
with its own sound or by other recordings, we model it by
accumulating statistics of its audio descriptor distribution
over fixed segments (sizes between 2/3 and 1 second are
appropriate, depending on the source sounds).

The descriptors are calculated within the CATART sys-
tem [21] by a modular analysis framework [32]. The used
descriptors are: fundamental frequency, periodicity, loud-
ness, and a number of spectral descriptors: spectral cen-
troid, sharpness, flatness, high- and mid-frequency energy,
high-frequency content, first-order autocorrelation coeffi-
cient (expressing spectral tilt), and energy. Details on the
descriptors used can be found in [33] and [34]. For each
segment, the mean value and standard deviation of each
time-varying descriptor is stored in the corpus, although
for our example of short segments of static rain sound the
standard deviation is not informative.

We evaluated two different methods of statistical mod-
eling: histograms (section 3.1) and Gaussian mixture mod-
els (section 3.2).

3.1 Histograms

In the histogram method, the individual distributions of the
per-segment descriptor values for an input texture are esti-
mated using histograms.

Figure 1 shows the histograms for three classes of rain
for 6 descriptors. The corpus is comprised of 2666 units of
length 666 ms in 19 sound files of total length of 29.5 min-
utes from the SoundIdeas database, with 701 units for light
rain, 981 for medium rain, and 984 for heavy rain. For this
corpus, the descriptors are more or less mutually indepen-
dent, which means that the conceptually simple histogram
method gives acceptable results.

For the control of resynthesis, we use the method known
as inverse transform sampling, where these histograms are
interpreted as probability density functions (PDF), from
which we calculate the cumulative sum to obtain the CDF
(cumulative density function). We then draw random bin
indices accordingly by accessing the CDF by a uniformly
distributed random value, and draw a uniformly distributed
random descriptor value within the bin in order to gener-
ate a stream of target descriptor values that obeys the same
distribution as the target, in the limits of the discretisation
of the histogram.

The resulting distributions can be easily interpolated to
generate a smooth evolution from one texture to the next.

2

http://obiwannabe.co.uk/tutorials/html/tutorials_main.html


7th Sound and Music Computing Conference (SMC), July 2010, Barcelona, Spain

40 60 80
0

20

40
Pitch as Note Number

0 0.02 0.04 0.06
0

50

100
Loudness

0 0.05 0.1 0.15
0

50

100
Periodicity

0 1 2 3 4

x 10
−3

0

50

100
SpectralFlatness

0 200 400 600
0

100

200
SpectralCentroid

0 0.2 0.4 0.6 0.8
0

100

200
AC1

Figure 1. Histograms of spectral centroid, loudness, spectral flatness for the three classes of light (green/clear grey),
medium (blue/dark grey), heavy (red/medium grey) rain over a corpus of 2666 segments.

These target descriptors then serve to control a CBCS
engine with a corpus of source sounds, as explained in sec-
tion 3.3.

3.2 Gaussian Mixture Models

In order to capture possible dependencies between the dis-
tributions of descriptor values, in this method, we model
them by Gaussian mixture models (GMMs).

Figure 2 shows the probability density of a two-element
mixture for our test corpus, and the interdependencies be-
tween two descriptors.

GMMs can be estimated efficiently by Expectation–
Maximization. The EM algorithm finds the parameters of
a mixture of m multivariate d-dimensional normal distri-
butions:

Pj(x|µj ,Σj) =
1

(2π)
d
2 det(Σj)

1
2
e−

1
2 (x−µj)

T Σ−1
j (x−µj)

(1)
where µj are the centres, and Σj the covariance matrix.
Each mixture component is chosen with a prior probability
of pj .

For the control of resynthesis, we first choose the com-
ponent j of the GMM according to the prior probabilities
pj , and then draw values from the component j by taking
advantage of the affine transformation property of normal
distributions as

Pj = µj + Aj erf(Z) (2)

with Z a uniformly distributed vector, erf the error func-
tion, i.e. the CDF of a Gaussian, and Aj being the lower
triangular matrix from the Cholesky decomposition of Σj ,
i.e. Σj = AT

j Aj .
GMM parameters can also be interpolated, however, the

building of the CDFs for resynthesis is computationally
more expensive because of the Cholesky decomposition
that needs to be recomputed each time the interpolation
changes. Also, care has to be taken to match the m GMM
components for the interpolation of µj and Σj . We chose
a greedy matching strategy by closeness of the centres.

3.3 Corpus-Based Concatenative Synthesis

The resynthesis of textures is driven by a vector x of tar-
get values for the d used audio descriptors, drawn from
the above distributions. Sounds that fulfill these target val-
ues are selected from a corpus of source sounds by corpus-
based concatenative synthesis, as explained in the follow-
ing.

The selection of the unit that best matches a given target
is performed by evaluating a weighted Euclidean distance
Ct that expresses the match between the target x and a
database unit un with

Ct(un, x) =
d∑

i=1

wt
i Ct

i (un, x) (3)

based on the normalized per-descriptor distances Ct
i for

descriptor i between target descriptor value x(i) and da-
tabase descriptor value ui(i), normalised by the standard
deviation σi of this descriptor over the corpus:

Ct
i (un, x) =

(
x(i) − un(i)

σi

)2

(4)

Either the unit with minimal distance Ct is selected, or one
is randomly chosen from the units within a radius r with
Ct < r2, or from the set of the k closest units to the target.

The weights wj were determined interactively for our
test corpus, with equal weights for the spectral descriptors,
and half weight for pitch and loudness.

Synthesis is performed by possibly transforming the
pitch, amplitude, or timbre of the selected units, and then
concatenating them with a short overlap, which is suffi-
cient to avoid artefacts for our texture sounds. One ad-
ditional transformation is the augmentation of the texture
density by triggering at a faster rate than given by the units’
length, thus layering several units.

Our synthesis engine (see section 4) works in real time,
which allows interactive control of the resulting textures.
Therefore, and also because we do not model the transi-
tions between units, the unit selection does not need to use
sequence-based matching with the Viterbi algorithm [33].
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Figure 2. Probability density contours projected on the NoteNumber/Periodicity plane of a Gaussian mixture model of
three classes of rain.

3.4 Corpus Expansion

One remaining problem that has not yet been addressed is
the possibility that the corpus might not cover the whole
range of interpolated and stochastically generated target
descriptors. With interactive navigation, we can avoid this
shortcoming by judicious tweaking of the playback param-
eters such as pitch, gain, and filters. In the retargetting
case, however, it is hard to derive the necessary transfor-
mations from the target values.

This problem could be solved by applying Feature Mod-
ulation Synthesis (FMS), with the existing research just
at its beginning [35]. FMS is concerned with finding the
precise sound transformation and its parameters to apply
to a given sound, in order to change its descriptor values
to match given target descriptors. The difficulty is here
that a transformation usually modifies several descriptors
at once, e.g. pitch shifting by resampling changes the pitch
and the spectral centroid. Recent approaches [36] there-
fore try to find transformation algorithms that only change
one descriptor at a time.

We can get around this problem using a data-driven
corpus-based approach, by automatically generating vari-
ants of each unit with a certain number and amount of
transformations applied, analysing their sound descriptors,
and storing only the descriptors and the transformation pa-
rameters. The resulting sounds can be easily regenerated
on playback.

We generate 5 steps of transpositions by resampling 1
half-tone around the original pitch, and 3 cutoff settings
of gentle low-pass and high-pass filters in order to enlarge
the timbral variety of the source corpus. The effects of this
expansion can be seen in figure 3: a much larger part of
the descriptor space between and around the original units
is covered by the corpus enlarged 45-fold.

Note that the augmentation of the corpus size does not
penalise the runtime of the unit selection much, since we
use an efficient kD-tree search algorithm [37] where each
doubling of the corpus only adds one more search step on
average.

Figure 3. Scatter plot of a texture corpus before (left) and
after expansion (right). The x/y/colour axes are spectral
centroid, loudness, periodicity.

4. APPLICATIONS AND RESULTS

Our prototype texture synthesiser is implemented in the
CATART system 2 [21] for MAX/MSP with the extension
libraries FTM&CO 3 [38] making it possible to navigate
through a two- or more-dimensional projection of the de-
scriptor space of a sound corpus in real-time, effectively
extending granular synthesis by content-based direct ac-
cess to specific sound characteristics.

The statistical modeling, interpolation, and generation
of probability distributions is conveniently handled by the
modules mnm.hist, mnm.gmmem, ftm.inter, mnm.pdf
from the MnM library [39] included in FTM&CO.

Figure 4 shows an example result using the density pa-
rameter, starting from 1 to 10-fold density, resulting in a
convincing, albeit quick progression from light rain to a
heavy shower. This effect is visible in the gradual whiten-
ing of the spectrum. This and other sound examples can be
heard on http://demos.concatenative.net.

A creative application of the principle we presented is
given in [31], where a musical score for an ensemble was
generated from an analysis of sound textures like melting
snow or glaciers.

2 http://imtr.ircam.fr/index.php/CataRT
3 http://ftm.ircam.fr
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Figure 4. Spectrogram of synthetically densifying rain.

5. CONCLUSION AND FUTURE WORK

The sound textures resulting from our descriptor-driven
texture synthesis approach using corpus-based concatenat-
ive synthesis stay natural whilst being highly controllable.
This goes beyond previous approaches that use an existing
recording that is extended in time.

We rely on relatively long segments that capture the fine
temporal structure of the sounds, and on crossfade and lay-
ering to smooth out timbral changes between units. For
less overlap, however, abrupt spectral changes can be no-
ticeable, which could be alleviated in two ways in future
work: First, we could take into account the timbral tran-
sitions in the selection, avoiding too large jumps in the
descriptor space. Second, we could apply the grain seg-
mentation approaches described in section 2.2 and work
with the unitary micro-events constituting the source tex-
tures (for instance, reconstitute rain by grains of water drop
length, cut out of the source sounds).

Code is being developed at the moment that adds a third
method of statistical modeling by kernel density estima-
tion. The resulting smoothed d-dimensional histogram cap-
tures the interdependencies of the descriptors, unlike the
separate histogram method in section 3.1, while allowing a
more detailed modeling of the descriptor distribution than
GMMs in section 3.2.

The brute-force method of corpus expansion (sec-
tion 3.4) could be easily optimised by applying a greedy
strategy that tries to fill only the “holes” in the descriptor
space between existing clusters of sounds. Starting from
random transformation parameters, if we hit a hole, we’d
explore neighbouring parameters until a desired density of
the space is reached.

Finally, the biggest restriction to our modeling approach
lies in the assumption of stationarity of the source textures.
This is appropriate for many interesting textures, but al-
ready rain with intermittent thunder sounds wouldn’t be
modeled correctly. Clearly, clustering and modeling of the
transitions between clusters using hidden Markov models
(HMMs) or semi-Markov models seems promising here.
This would base the graph approach introduced in [25] on
actual data, and could also model the larger-scale tempo-
rality of sound scapes as a sequence of textures.
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Marie Curie, Paris, 2004.

[34] G. Peeters, “A large set of audio features for sound de-
scription (similarity and classification) in the Cuidado
project,” Tech. Rep. version 1.0, Ircam – Centre Pom-
pidou, Paris, France, Apr. 2004.

[35] M. Hoffman and P. Cook, “Feature-based synthesis:
mapping acoustic and perceptual features onto synthe-
sis parameters,” in Proc. ICMC, (Copenhagen, Den-
mark), 2006.

[36] T. Park, J. Biguenet, Z. Li, C. Richardson, and
T. Scharr, “Feature modulation synthesis (FMS),” in
Proc. ICMC, (Copenhagen, Denmark), 2007.

[37] D. Schwarz, N. Schnell, and S. Gulluni, “Scalability in
content-based navigation of sound databases,” in Proc.
ICMC, (Montreal, QC, Canada), 2009.

[38] N. Schnell, R. Borghesi, D. Schwarz, F. Bevilacqua,
and R. Müller, “FTM—Complex Data Structures for
Max,” in Proc. ICMC, (Barcelona), 2005.

[39] F. Bevilacqua, R. Muller, and N. Schnell, “MnM: a
Max/MSP mapping toolbox,” in New Interfaces for
Musical Expression, (Vancouver), pp. 85–88, 2005.

6


	 1. Introduction
	 2. Related Work
	2.1 Classification of Synthesis Methods
	2.2 Analysis Methods for Sound Textures

	 3. Descriptor-Based Sound Texture Sampling
	3.1 Histograms
	3.2 Gaussian Mixture Models
	3.3 Corpus-Based Concatenative Synthesis
	3.4 Corpus Expansion

	 4. Applications and Results
	 5. Conclusion and Future Work
	 6. Acknowledgements
	 7. References

