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Summary

One approach to improving sound quality is to create a preference map on the basis of several acoustic parameters rele-
vant to auditory perception. The map is derived from several stages of subjective testing, acoustic analysis, and auditory
modeling. The multidimensional scaling technique CLASCAL reveals common perceptual dimensions shared by sets
of sounds samples, perceptual features specific to each sound, and the different subject classes among listeners. The
listeners are asked to judge the degree of dissimilarity of all pairs of sounds on a continuous scale. The analysis gives
a perceptual spatial representation of the sounds. From this analysis, acoustic and auditory modelling analyses can be
performed to determine the stimulus parameters that are strongly correlated with different perceptual dimensions and,
where possible, with the specific features. The next stage in the analysis involves determining the probability of one
sound being preferred to another. An analysis of the data allows a projection of the structure of listeners’ preferences
onto the physical parameter space underlying the previously determined multidimensional perceptual space. In many
cases, it is found that the physical parameters having the most effect on the listeners’ preferences are dependent on
the set of stimuli being compared. Furthermore, when one stimulus parameter is kept constant across trials, this may
alter the effects of other parameters on the listeners’ preferences. Therefore context effects must be taken into ac-
count in multidimensional sound quality analysis, particularly since the qualitative aspects of most sounds are clearly

multidimensional.

PACS no. 43.66.L, 43.66.Y, 43.50.Y

1. Introduction

Noises emitted by domestic sound objects (e.g., light
switches, vacuum cleaners, and coffee machines) or equip-
ment (e.g., car motors, air conditioners, and windshield
wipers) are sources whose intrinsic perceptual and acous-
tic properties can be characterized and evaluated by clas-
sical methods of experimental assessment [1, 2] and mea-
surement [3]. Concerning the characterization of the qual-
ity or annoyance associated with a sound object, it is im-
portant to define the appropriate techniques in order to al-
low designers to define the acoustic properties of a prod-
uct based on perceptual data derived from human listeners.
In addition, certain acoustic aspects contribute in a signif-
icant way to the auditory image projected by the object
that produces them and are important for emphasizing its
identity, ergonomics, esthetics, and functionality.

The problem is that the sounds are complex and thus
have a multidimensional nature from both acoustical and
perceptual points of view. Further, not all of the possible
dimensions have been characterized psychophysically. It
is thus necessary at this stage in the development of sound
quality research to determine the number of salient per-
ceptual dimensions for a corpus of sounds associated with
a given type of object, as well as their auditory and phys-
ical nature, in order to characterize the sonic identity of
the objcct type under study. Subsequently, it is necessary
to determine in a similar way the multidimensional nature
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of the quality or annoyance created by a sound source and
thus to determine the combined or independent contribu-
tions of the salient perceptual dimensions. However, the
large majority of studies of sound quality often adopt the
method of magnitude estimation [4] or the method of pre-
defined semantic differentials [5]. In the former case, the
human listener must give & numerical value that is propor-
tional to unpleasantness, for example, and the data anal-
ysis yields a unidimensicnal unpleasantness scale. This
scale cannot be used to deduce the contribution of different
auditory attributes and acoustic parameters to the position
of each judged sound source on the scale. In the latter case,
the listener evaluates the sounds on different continuous
scales, the extremitics of which are defined by opposing
adjectives: bright/dull, loud/soft, agreeable/disagreeable,
etc. Each scale thus defined allows a measurement of the
predefined auditory (semantic) attributes without specify-
ing their perceptual salience. These methods thus have
limits in their ability to ckaracterize the quality of sound
objects, particularly when the salient perceptual, acoustic,
and semantic properties of the objects are not known in
advance.

Research in the cognitive psychology of audition re-
veals the interest of multidimensional analysis methods in
order to characterize perceptually the dimensions of the
timbre of musical instruments [6, 7]. Recently at IRCAM
[8], a three-dimensional perceptual space was obtained
using the multidimensional scaling program CLASCAL
[9]. A quantitative correlation was established between
acoustic parameters and the coordinates of the instrument
sounds in the perceptual space, one dimension having a
spectral nature, another a temporal nature, and the last a
spectrotemporal nature [10].
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Figure 1. Global schema of the subjec-
tive characterization approach, involving
multidimensional scaling of dissimilar-
ity judgements (I), acoustic analyses and
correlations with the perceptual spacc
(II), and construction of a multidimen-
sional preference map (III).

This approach is valid for other types of sound objects.
This article proposes a general method for characterizing
sound quality on the basis of objective criteria. The dif-
ferent stages of the method as well as the precautions to
be taken in using it will be discussed below, with a study
performed on interior car sounds being used as an exam-
ple (11, 12]. This study was performed at IRCAM in col-
laboration with the automobile manufacturers Renault and
PSA Citroén and falls under the framework of a contrac-
tual agreement. Due to confidentiality constraints, the de-
scription will remain formal without explicitly describing
the results obtained (identity of sound sources and exact
nature of acoustic parameters). This constraint does not,
however, affect the main aim of the article, which is the
presentation of the experimental methods and data analy-
sis techniques employed to explore sound quality in all its
natural sonic complexity.

A global view of the method showing the relations
among the different stages is presented in Figure 1. At the
outset, the sound corpus must be defined and the sounds
carefully selected in order to obtain a relatively homoge-
neous corpus (section 2). As a function of the class of
sound object(s) being studied the panel of listeners must
be selected according to appropriate criteria (section 3).
Globally, a first step consists in determining the perceptual
attributes common to the panel of listeners that are used to
compare sounds to one another (section 4). A multidimen-
sional scaling analysis (CLASCAL) yields a spatial model
that can be represented graphically and which reveals the
perceptual structure underlying the listeners’ judgments in
terms of continuous dimensions shared by all the sound
samples and specific features (specificities) of each sound.
The CLASCAL output also allows an analysis of differ-
ent judgment strategies used by listeners, corresponding
1o their grouping into latent classes. A subsequent acoustic
analysis phase attempts to deterrnine the acoustic and psy-
choacoustic parameters of the sound signals that are cor-
related with the positions of the samples along the percep-

tual dimensions (section 5). In the last stage, the degree of
preference (or, inversely, annoyance) associated with each
sound is evaluated as a function of the perceptually sig-
nificant acoustic parameters revealed in the previous stage
(section 6). The advantage of this approach is that it does
not limit the exploration and characterization of the com-
ponents of sound quality to parameters that are already
known. It provides a method for finding new perceptu-
ally salient parameters that engineers had not imagined,
but that listeners hear and use in their evaluations anyway.

2. Establishment of the Sound Corpus

In order to ensure a realistic restitution of the sound field
in the experimental situation that is as close as possible
to the original conditions, it is necessary to use binaural
techniques [13]. The car sounds used in the study were
recorded digitally by the automobile manufacturers with a
dummy-head system seated in each car in the front passen-
ger seat with the car running on a test track. The sounds
were reproduced in the experiments by IRCAMs ISPW
real-time digital signal processing environment [14], us-
ing the MAX application on the NeXT workstation. All
sounds were edited to 5 s in duration with 50 ms attack and
decay ramps, taking care to avoid sounds with recording
artifacts, The three important points for sound restitution
are the following:
e the specifications of the binaural recording conditions,
¢ the inverse filtering that compensates for the effects of
the transfer function of the sound acquisition and pre-
sentation systems, and
e the calibration of the sound level for headphone presen-
tation.

An alternative to dummy-head recordings may also be
used and is often sufficient, if not as realistic: simple
stereo microphone recordings. A recent study [15] on ur-
ban sound environments has shown that a stereo record-
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Table 1. Composition of four groups of car sounds used.

Motor speed 1 Motor speed 2

Group 2
Group 4

Loudness variable
Loudness equalized

Group t
Group 3

ing with cardioid microphones spaced 60 cm apart with a
100° opening conserves the ecologically valid character
of sound samples played back over loudspeakers. Certain
acoustic characteristics perceptually dominate and over-
power other, less salient ones. This is often the case with
loudness, for example. Two sounds that differ mainly in
terms of loudness will be judged different according to
this dimension, with little contribution from other dimen-
sions of variation being taken into account. In order to
eliminate overly obvious parameters, it is sometimes nec-
essary to equalize a corpus of sounds along these param-
eters, such as loudness, duration, and pitch. However, in
order to study the influence of loudness, pitch, and broad-
band noise level (the latter two being related here to mo-
tor speed and car speed) on the perceptual representation,
four groups of 16 car sounds were used. The cars were the
same for each group. Two combinations of motor speed
and gear setting were employed. In the first part of the
study, the loudness was not modified and the sounds were
presented as they would have been perceived in the car
interior. In the second part, the loudness of the sound sam-
ples was equalized over each of the two sound sets. The
composition of the four groups is summarized in Table 1.

An initial listening to the sound samples is important
to discern salient perceptual properties that might influ-
ence the judgments of subjects in the main experiments.
In fact, it is necessary to avoid characteristics that are too
recognizable in certain samples, due either to their strong
identity or to recording artifacts. The set of cars tested cor-
responded to the same price range. There was no risk that
individual cars would be recognized. It is possible to de-
termine more precisely the structure of the corpus used by
classing the sounds according to different predefined dom-
inant criteria. A cluster analysis [15] can reveal the degree
of homogeneity of the sound corpus. If the tree structure
obtained reveals a strong categorization of the corpus, it
is advisable to determine which categories best represent
the objectives of the study in order to obtain appropriate
stimuli.

3. Subject Selection

According to the type of study, it is generally advisable
not to use subjects having too great a knowledge of the
test product that could induce biases in their judgments.
A car mechanic, for example, would listen in a different,
much more analytical way than an average listener (one
might speak of professional "deformation”). In the present
study, subjects aged 25 to 45 years were recruited from a
list of volunteers such that an equal repartition of sex and

age category were obtained. 30 subjects were recruited for
both the dissimilarity (section 4) and preference (section
6) studies and an additional 30 were recruited for the pref-
erence study. The subjects were required to have a driving
permit and a car of the appropriate price range had to be
owned by someone in their immediate family. They were
reimbursed for their participation.

4. Dissimilarity Scaling: The CLASCAL Program

4.1. Apparatus

The digitized sounds were processed by inverse filtering
on a NeXT computer equipped with an ISPW card and the
MAX program. They were subsequently converted to ana-
log signals with ProPort converters before being amplificd
through a Canford stereo amplifier and sent to AKG 1000
open-air headphones. The experiment was run in the Psi-
Exp computer environment [16] which provides stimulus
presentation, data acquisition, and graphic interface for the
subject.

4.2, Procedure

The experiment was performed in four sessions with one
session for each gear setting/motor speed combination,
with and without loudness equalization. All 120 different
pairs between the 16 car sounds were presented in each
session. At the beginning of the session, the subject lis-
tened to all the samples :n a random order to get a sense
of the range of variation possible. Next, 15 training trials
were presented to give the subject the possibility to be-
come familiar with the rating task. On each trial a pair of
sounds was presented, separated by a 1-s silence. The sub-
ject saw a horizontal slider on the computer screen with
a cursor that could be moved with the computer mouse.
The scale was labelled ”Very Similar” at the lett end and
”Very Dissimilar™ at the -ight end. A judgment was made
by moving the cursor to the desired position on the slider
and clicking on a button to record it in the computer. The
initial position of the cursor was random on each trial and
the subject had to move it at least once before entering
the judgment. Once the judgment was entered the program
proceeded automatically to the next trial. The judgments
were coded on a scale from O (very similar) to | (very dis-
similar), for example. The scale could equally well vary
from O to any positive number.

4.3. Multidimensional scaling analysis with CLASCAL

The data used in a multidimensional scaling (MDS) anal-
ysis consist of judgments of dissimilarity between each
pair of the stimuli under consideration, i.e. N(N-1)/2 judg-
ments for N stimuli from each subject. The dissimilari-
ties are modelled as distances in an extended Euclidean
space of R dimensions. In the spatial representation of the
N stimuli a large dissimilarity is represented by a large
distance. The CLASCAL model for the distance between
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Figure 2. Perceptual space of the stimuli from
Group 3 derived from dissimilarity scaling.

stimulus i and stimulus j developed by Winsberg and De
Soete [9, 17] and presented in Figure 1, postulates com-
mon dimensions shared by all stimuli, specific attributes or
specificities particular to each stimulus, and latent classes
each of which have different saliences or weights for each
of the common dimensions and the set of specificities.
Maximum likelihood estimates of the model parameters
are determined (that is the coordinates of each stimulus
on each dimension of the common space, the specifities of
the stimuli, the dimension weights for each class, and the
proportion of subjects in each class). An EM (expectation-
maximization) algorithm is used to determine the class
structure. (See [9] for a complete description of the CLAS-
CAL algorithm and the latent class approch to MDS.
Space does not permit an adequate description here.) The
class structure is latent; there is no apriori assumption con-
cerning the latent class to which a given subject belongs.
Model selection, including the choice of the appropriate
number of latent classes, the number of common dimen-
sions, and the presence or absence of specificities, is based
on the BIC statistic which is information based and de-
pends on the log likelihood, the number of model param-
eters, and the number of observations [18], as well ason a
Monte Carlo procedure [19]. Models with the lowest BIC
values are chosen. The Monte Carlo procedure is used to
determine the appropriate number of latent classes and to
verify the spatial model. (See [9] for a discussion on model
selection.) The CLASCAL analvses yield a spatial repre-
sentation of the N stimuli on the R dimensions, the speci-
ficity of each stimulus, the probability that each subject
belongs to each latent class (generally equal to one for
one of the classes) and the weights or saliences of each
perceptual dimension for each class. Also included in the
output results are the model variance, the log likelihood,
the value of the BIC statistic, and the results of the Monte
Carlo procedure if used.

4.4. Results

A single class was sufficient for all data sets. An anal-
ysis with the number of dimensions varying between 1|
and 6 without specificities and between | and 5 with
specificities was then performed for a single subject class.
BIC indicated that the best model was three-dimensional
with specificities for Group 3 and two-dimensional with
specificities for the other groups. A graphic represenia-
tion of the data corresponding to the sounds of Group 3 is
given in Figure 2. Each sample is represented in the three-
dimensional common space. The specifities of the stimuli
are not shown in the figure.

5. Physical Parameters Underlying the Perceptual
Space

5.1. Acoustic analysis

Once the perceptual configuration is obtained, it is im-
portant to give a physical interpretation. An interpretation
means some systematic relationship between the stimulus
characteristics and the locations in the space.

An appropriate spectral representation for the signal
analyses is chosen. Since the car sounds studied (constant
motor speed) had a quasi-stationary character, the method
of Welch [20] was used. In order to take into account audi-
tory response as a function of level and frequency, the ana-
Iytic formulations of different classic weighting functions
were used (dBA, dBB, dBC). A physiological modeling
approach was also used in which the operation of the pe-
ripheral auditory system was considered at two levels: the
filtering due to the external and middle ears was modeled
with a second-order Butterworth bandpass filter with —3-
dB cutoff frequencies of 450 Hz and 8500 Hz [21]. As for
the cochlea, Moore and Glasberg’s [22] ERB (equivalent
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Table II. Correlation coefficients between perceptual coordinates
and "objective” parameters. The probability p that the two measures
are independent is indicated for p < 0.01 (*) and for p < 0.05 (1.
Parameter @1 = Loudness.

Group t Group 2
Parameter | Dim. | Dim.2 | Dim. | Dim. 2
Q1 -0.92" -0.06 -0.917 0.28
w2 0.09 0.80" - -
s - . 0.43 -0.88"
Group 3 Group 4
Parameter | Dim. | Dim.2 | Dim.3 | Dim. | Dim. 2
w2 0.35 -0.7" -0.14 -0.93" -0.29
3 - - - 0511 | 086
a -0.817 0.32 -0.33 - -
P5 -0.32 0.00 -0.83" - -

rectangular bandwidth) formula was adopted for auditory
filter bandwidths and Patterson et al.’s [23] gammatone fil-
ters were used. On the bases of these early analysis stages,
a set of parameters derived from the psychoacoustic lit-
erature [24] and from studies on timbre [10] were calcu-
lated. These parameters were chosen by way of an em-
pirical loop that consisted of listening to the sounds with
respect to their relative positions in the multidimensional
space in order to isolate the kind of variation that charac-
terized a given dimension. Next, hypotheses on the new
physical or psychoacoustic indices that were appropriate
for the stimuli under study were made, and the analyses
were performed to extract the quantitative values. Finally,
the correlation of each parameter with the coordinates of
the sound samples along the perceptual dimensions was
evaluated. A good correlation is taken as an indication that
the parameter is a strong candidate for a quantitative pre-
dictor of the perceptual dimension.

5.2. Correlations

In Table 11 are presented the correlation coefficients be-
tween the perceptual dimensions and the physical or psy-
choacoustic parameters for each sample group. The prob-
ability (p) that the perceptual coordinates and the parame-
ters values are independent (or unrelated) is given as well.
The variance in the perceptual dimension “explained” by
the predictor parameter can be determined by taking the
square of the correlation coefficient. Finally, for each of
the dimensions, a quantitative descriptor was determined.
It is important to note that in equalizing loudness over
the set of samples (Groups 3 and 4), other dimensions
emerged that correlated with parameters not revealed in
the analysis of Groups 1 and 2 with loudness variation.
This kind of context effect is particularly important to
emphasize since it demonstrates that the salient percep-
tual parameters one obtains in such a study depend very
strongly on the kinds of physical variation present in the

stimulus set. The preference analysis to be examined in
the next section will determine the utility for preference of
each of the predictor parameters. Those that have a strong
weight can thus in turn be equalized over the sound set
in a subsequent stage of experimentation. As such, this
approach allows a progressive minimization of perceived
differences in terms of preference or unpleasantness be-
tween the stimuli.

6. Preference Analysis: A Thurstone Case V
Preference Model with Spline Transformations

6.1. Procedure

At the beginning of the session, the subject listened to all
the samples in a random order to get a sense of the range
of variation possible. Then, all pairs of different samples
were presented in a random order. On each trial the subject
heard a pair of samples only once and had to choose which
sound was preferred. The data consist of the proportion of
subjects that preferred one sample over another for each
of the N stimuli.

6.2. Stages in the preferznce analysis

This phase of the study aztempts to construct a preference
map. De Soete and Winsberg [25] developed a Thursto-
nian pairwise choice mocel with univariate and multivari-
ale spline transformations. In their preference model the
probability that stimulus i is prefered over stimulus j is
defined as a function of tae difference in “utility” of each
stimulus or sample. The preference analysis program de-
veloped by De Soete and Winsberg is presently limited to
two dimensions, generally considered as adequate to de-
scribe a preference space (as is the case with Groups 1, 2,
and 4). If three perceptual dimensions are recovered in an
MDS analysis (as with Group 3), all pairs of candidates
may be tested. The model seeks a function that transforms
the values of the physical parameters a; and b;, for stimu-
lus ¢ with a utility value, u;, that depends on the preference
probability. The dependence is expressed as follows,

pi; = Plu; — uy), (D

where p;; is the probability of preferring sample ¢ over
sample j, ® is the cumulative normal (Gaussian) function,
and u; is the utility of sample 4.

The greater and more positive the difference in utility
between the two samples is, the more sample ¢ will be
preferred over sample j.

Two types of models were tested: additive and multi-
variate. In the additive model (2), it is assumed that the
contributions of the two parameters are independent and
that the global utility of a sample is the sum of the utilities
of each parameter. Thus, u is a function of the predictor
parameters (o and b}, each having its own transform func-
tion (f and g, respectivelv):

w; = fla;) + g(b;). (2)
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Figure 3. Evolution of the utility of Le¢ (ABA) and parameter 2 from
the stimuli of group 2. The circles (0) correspond to the stimuli and
the asterics (*) correspond to the placement of the internal knots of
the spline.

The functions f and ¢ are splines; that is, piecewise poly-
nomial functions, the number and order of each polyno-
mial being variable. The order of the spline is taken to be
equal to the maximum degree of the polynomial plus one.
The junctions between the polynomials of a given spline
correspond to the “internal knots” and are of finite num-
ber. Attention is restricted to splines with maximal con-
tinuity at each knot. That is, for a spline of order k, the
function and its k£ — 2 derivatives are continuous. The de-
fault knot positions are located at a ladder of quantiles,
thus an equal number of observations is used to determine
each spline parameter. Each spline of a given degree can
be represented as a linear combination of a set of basis
functions.

In the multivariate model (3), the utility is a function of
both parameters:

u= f(a,b). (3)

This multivariate function is represented by a multivari-
ate spline, that can be defined as a linear combination of
tensor products of univariate basis splines. In this model
therefore, the effect of one parameter on utility depends
on the value of the other parameter.

For a preference matrix and a given set of predictor pa-
rameters, a large number of models may be tested by vary-
ing the type of model (additive or multivariate) and the
order and number of internal knots of the splines. BIC is
used to chose between the candidate models. For a given
preference matrix, this criterion can also be used to choose
from among various pairs of predictor parameters that had
more or less similar correlations with the perceptual space.
This latter choice is of a heurislic nature, since the corre-
lations with the different perceptual dimensions are also
taken into account. In general, the best model is chosen
for each set of parameters and the resulting utility func-
tions are examined in order to compare the different sets

of parameters in terms of their interpretability. The anal-
yses yield the preference function for each dimension for
an additive model, and the preference surface for a multi-
variate model.

As an example, the utility functions for acoustic level
and another parameter (parameter 2) are shown in Figure 3
in which the additive model was retained. Not surpris-
ingly, the utility function for level is more or less mono-
tonic: the more the level increases, the more the utility
for preference decreases. The variation in utility with the
other parameter is nonmontonic, however its overall in-
fluence on preference is comparatively small and is com-
pletely overpowered by the effect of level variation. For
the level-equalized sample sets, the parameters had more
equivalent influence on preference and some of these were
clearly nonmonotonic, indicating that there are zones in
the middle of the range of variation that are maximally or
minimally preferred by the panel of listeners.

7. Conclusions

The data analysis reveals representations of the sets of car
sounds that have several perceptual dimensions for both
combinations of gear setting and motor speed. The loud-
ness equalization allowed the emergence of other factors
contributing both to similarity perception and quite no-
tably to preference. When loudness is a factos in the com-
parison of car sounds, it clearly dominates the preference
judgments. The role of the secondary parameters vary
with gear setting and motor speed and globally have less
importance in these judgments. Generally, the perceptual
salience of the dimensions is not the same for the two gear
setting/motor speed combinations, indicating that the rel-
ative importance of perceptual cues evolves with changes
in car functioning and context (equalized loudness or not).

This method, when applied to very different sets of
sound objects (musical instruments and car sounds), thus
reveals: 1) a multidimensional mental representation of
complex sound events, 2) a close relation between the per-
ceptual dimensions and acoustic properties or their au-
ditory transforms, and 3) specific properties of certain
sounds that affect their perception and comparison with
other sounds. For musical instrument sounds, differences
between listeners in the perceptual importance according
to the different dimensions and specificities have also been
found. While such differences were not found in the stud-
ies on car sounds mentioned above, they should be sys-
tematically verified in such experiments in case they do
exist. The coherence of the results across these different
stimulus sets indicates a great stability in the perceptual
processes involved in the appreciation of homogeneous
sets of sounds. Further, it is important to emphasize that
aside from loudness, none of the objective parameters re-
vealed corresponded to those currently included by default
in most sound quality measuring devices. A cautionary
note on a methodological issue is warranted here how-
ever. In another, similar study with a set of environmental
sounds that were extremely heterogeneous, a perceptual
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structure was found that was strongly categorical in nature
and which was associated with a high degree of identi-
fication of the individual sound sources by the listeners
[26]. Judgments of dissimilarity scemed in this case to be
based entirely on the categories that the stimuli belonged
to and less to their individual acoustic and sensory proper-
ties. Thus, this predominant cognitive factor—recognition,
classification, and identification of the sound source [12]-
rendered inappropriate the conception of the perceptual
space in terms of continuous underlying dimensions. The
above techniques of preference analysis are not applica-
ble in such cases and other techniques need to be used.
However, for homogenous sound sets, the experimental
approach described above is a powerful method for under-
standing the perceptual underpinnings of sound quality.
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