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Abstract

Multimedia interaction systems are inherently concurrent. Developing correct concurrent systems
is difficult because we need to consider all the possible interactions between processes. To reason
formally about concurrent systems, there are several concurrent process calculi. We developed
multiple prototypes for real-time capable interpreters for both, Concurrent Constraint Program-
ming (CCP) and Non-deterministic Timed Concurrent Constraint (ntcc). We found out that using
lightweight threads to implement these interpreters is not appropriate for real-time (RT) interac-
tion. Instead, we recommend using event-driven programming. Using this model of concurrency,
we developed Ntccrt, an interpreter for ntcc capable of RT interaction. Ntccrt is based on encoding
ntcc processes as Gecode propagators. Using Ntccrt, we executed some models in Pure Data. Due
to our success using Gecode, we upgraded Gelisp, providing a graphical interface to solve musical
Constraint Satisfaction Problems (CSP) in OpenMusic based on Gecode. In Gelisp, constraints,
search heuristics, and optimization criteria can be represented graphically. Using Gelisp, we suc-
cessfully solved a CSP proposed by compositor Michael Jarrell.

Keywords: concurrent constraint programming, constraint satisfaction problem, constraints, ntcc,
gelisp, csp, interpreter, ccp, ntccrt, openmusic, real-time, gecol, gecode.
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Chapter 1

Introduction

There is a dispute between computer scientists about the way to develop multimedia interaction
systems. The first group argue that in order to implement real-time capable systems, those systems
should be written directly in C++ for efficiency. The second group argue that those systems
–inherently concurrent– should not be written directly in C++, because there is not a formalism
to reason about synchronization and concurrency in C++. The second group propose modeling
those systems using a formalism with formal semantics and verification procedures, and execute
those models on a real-time capable interpreter.

Although several formalisms to model concurrent systems have been developed in the last
two decades, we argue that there is not an efficient and generic interpreter to run multimedia
interaction systems in real-time. This problem led us to a research about developing a real-time
capable interpreter for a well-know formalism: Non-deterministic Timed Concurrent Constraint
(ntcc) [25].

In order to develop the interpreter, we developed prototypes for a generic implementation of
lightweight (lw) threads for Common Lisp. Since many applications for computer music are written
in Common Lisp, we though that creating an efficient implementation of lw threads for this language
would allow us to write real-time capable multimedia interaction systems as well as interpreters for
Concurrent Constraint Programming (CCP) [41] (the ancestor or ntcc). Then extend the CCP
interpreter for ntcc. The reader should be aware that most Common Lisp implementation does
not provide lw threads.

We found out that our implementations of lw threads are efficient to model a variety of concur-
rent systems in Common Lisp, but they are not efficient for CCP and ntcc interpreters. However,
we also found out that event-driven programming suits very good the concurrency control of a
real-time capable CCP interpreter. That way we developed a CCP interpreter. Then, we extended
the CCP interpreter to support timed processes and non-deterministic choice, creating a real-time
capable interpreter for ntcc.

Our ntcc interpreter is called Ntccrt. Using Ntccrt we executed –in real-time– ntcc specifi-
cations of multimedia interaction systems. As far as we know, this is the only software providing
a generic framework to specify and execute in real-time multimedia interaction systems modeled
with ntcc.

Since the ntcc interpreter is based on the constraint solving library Gecode [46] and the results
were outstanding, we upgraded two Common Lisp wrappers for Gecode, Gecol and Gelisp. Gecol
and Gelisp were originally developed for Gecode 1.3.1 and current version of Gecode es 2.2.0. After
upgrading them to current version of Gecode, we developed a graphical interface for Openmusic
(OM) [5] for Gelisp. The goal was to use Gecode to solve Constraint Satisfaction Problems (CSP)
for computer music and also using the interface (in the future) to execute ntcc specifications in
Common Lisp.

The rest of this introduction is organized as follows. Section 1.1 introduces the concept of
lightweight threads and the different strategies to implement them. Section 1.2 explains how we
can use Ntccrt to develop multimedia interaction systems and execute them in Pure Data (Pd) [31]
and Max/Msp [32]. Section 1.3 gives the motivation of solving CSP’s graphically and extending
Gelisp for that purpose. Finally, Section 1.4 presents the software we developed as a contribution
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of this work and the articles to be published next year.

1.1 Lightweight threads for Common Lisp

In computer science, a continuation is an abstraction of the processor registers, the events are an
abstraction of the hardware interruptions and a thread represents a sequential flow control or an
abstraction of a processor.

Sometimes, threads are described by their weight, meaning how much contextual information
must be saved for a given thread in order to schedule them [58]. For instance, the context of a Unix
process includes the hardware register, the kernel stack, user-level stack, process id, and so on. The
time required to switch from one Unix process to another is large (thousands of microseconds), for
that reason those are called heavyweight threads.

Modern operating systems kernels, such as Mac OS X and Mach, allow to have multiple threads
in the same process, decreasing the amount of context that must be saved with each one. These
threads are called medium-weight threads and it takes hundreds of microseconds to switch between
them [51].

1.1.1 Comparing threads by their context-switch duration

When all context and thread operations are exposed at user-level, each application needs only a
minimal amount of context information saved with it, so that context switching can be reduced to
tens of microseconds. These are called lighweight (lw) threads . For instance, lightweight threads
used by the Java VM outperform linux threads on thread activation and synchronization because
thread management operations do not need to cross kernel protection boundaries. But, linux native
threads have better performance on I/O operations [50]. Additionally, since lightweight threads
may block all the other threads when performing a blocking I/O operation, it is necessary to use
asynchronous I/O operations, adding complexity and increasing the latency for I/O operations.

1.1.2 Motivation: Developing real-time systems in Common Lisp

Most Common Lisp implementations such as Lispworks, SBCL, and MCL provide medium-weight
threads (usually called Lisp processes). They are usually based on pthreads (a portable implemen-
tation of medium-weight threads in C).

Those threads have two limitations, one is the amount of threads that can be working at the
same time. Usually, we can have hundreds of threads, opposed to lw threads where we can have
thousands of them. The other problem is the context-switch time. Medium-weight threads are
significantly slower than lw threads, being incompatible with real-time interaction. To solve that
problem, we explored different strategies to implement lw threads in Common Lisp.

1.1.3 Strategies to implement lightweight threads

Strategies to implement Lightweight threads include, but are not limited to: Scheduler activations
[3], a threading mechanism that maps n user level threads into some m kernel threads; Protothreads
[11], an abstraction that reduces the complexity of Event-based programs; virtual machine with
thread support [7], supporting the concurrent execution of multiple threads in the traditional way;
Coroutines [20], allowing multiple entry points, suspending and resuming execution at certain loca-
tions; Continuations [8], [47], an abstraction of the processor registers commonly used in functional
languages; multiple stack based threads [56], where we have an scheduler in charge of providing a
fair execution to all threads; and Event-driven programming [13], where a dispatcher is in charge
of processing events (stored in a queue) according to event handler for each type of event.

1.2 Using ntcc for multimedia interaction

We propose a new way to synchronize concurrent processes in signal processing languages such
as Pure Data and Max. Although complex concurrent processes can be programmed extending
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these languages with C++, we argue that writing those externals is difficult and time-demanding.
We propose using the ntcc formalism to specify concurrent processes and execute multimedia
interaction systems in real-time with our tool, Ntccrt.

1.2.1 Motivation: A declarative approach for concurrency in data-flow
languages

During the last two decades, several graphical data-flow programming languages have been devel-
oped for signal processing and composition of interactive computer music. The idea behind these
programming languages is controlling messages, audio and video signals by connecting graphical
objects via inlets and outlets.

The graphic environment facilitates the programming of interactive multimedia applications for
non-computer scientists according to the principles of Human-computer interaction. Examples of
these programming languages are Pure Data (Pd [31]) and Max [32] developed by Miller Puckette.

A computation in a data flow program starts by receiving an input. After that, the input goes
through multiple graphical objects. Each of them transforms the input into new messages, audio,
or video signals. These graphical objects can receive an input and transform it at any time. For
that reason, data-flow languages are inherently concurrent. The problem is that synchronizing
processes depending on multiple conditions is not trivial and may require sending and receiving
multiple complex messages (using complex data structures).

1.2.2 Overview of other solutions

To program complex concurrent applications in Max and Pd usually we need to extend them by
creating externals (i.e., binary plugins) in C++, Python, Ruby, Scheme, or other programming
languages.

Another approach is using the Flext library. Flext provides a unique interface to write
externals for both, Pd and Max in the C++ language. It also provides an interface to write
threads in different threading systems available for the C++ programming language.

Finally, there is an approach used by the improvisation software Omax [4]. This software is
composed by two modules. One module is in charge of signal processing (written in Max) and
the other one is in charge of concurrency control and style learning (written in OpenMusic ). The
concurrency control is made using Lisp processes (medium-weight threads found in many Common
Lisp implementations) and share-state concurrency. Unfortunately, all of them require writing
complex concurrent processes in C++ or Lisp.

1.2.3 Disadvantages of the other solutions

Synchronization provided by most programming languages –such as C++ and Lisp– is made by
using locks, semaphores, monitors, or other shared-state concurrency abstractions. Writing correct
programs using that model is difficult because it is required to specify the locks for variables,
threads, shared-memory areas, etc.

1.2.4 Our solution: Using ntcc to control concurrency in Max and Pd

In this work, we propose using ntcc to manage concurrency in data-flow programs. Ntcc is a
formalism where we can model reactive systems with synchronous, asynchronous and/or non-
deterministic processes. Additionally, it provides multiple agents who can reason about partial
information represented by constraints. The ntcc formalism and extensions of it have been used
to model interactive systems such as: an audio processing framework [38], musical improvisation
systems [36], [29], [42], and interactive scores [2], [42]. The novelty of this approach is specifying
concurrency in declarative way.

This solution would be incomplete if the designer of the system would have to write an ef-
ficient implementation –in a programming language– of every system he designs. Fortunately,
after modelling and proving properties of systems modeled in ntcc, it is possible to run those
models by using interpreters. In fact, there are three interpreters available: Lman [24], ntccSim
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(http://avispa.puj.edu.co) and Rueda’s interpreter [36], unfortunately none of them are able to
achieve real-time multimedia interaction. Real-time interaction means a response time fast enough
to interact with human players while they do not observe a delay in the communication.

In order to fix that inconvenient, we built an interpreter in the C++ programming language,
capable of real-time (Ntccrt). Ntccrt uses the Generic Constraints Development Environment
(Gecode [45]) to manage constraints and concurrency, and Flext for portability. Additionally
we provide an interface to the music composition environment OpenMusic [5], allowing the user
to specify (graphically) ntcc specifications and translating them to either stand-alone programs
interacting with the real-time library Midishare [9], or externals for Pd and Max.

1.3 Specifying Constraint Satisfaction Problems (CSP) graph-
ically

A Constraint Satisfaction Problem (CSP) is a mathematical problem where one must find objects
that satisfy a number of constraints (i.e., criteria over those variables). We extended Gelisp, a
library to represent musical CSP’s and search heuristics graphically. We provide two versions, one
for Common Lisp and one for OpenMusic. Using this library, we modeled a CSP proposed by
compositor Michael Jarrell and solved it successfully [19].

1.3.1 CSP’s for Music

CSP’s provide a declarative way to represent combinatorial problems, specifying constraints instead
of a sequence of steps to find the solution (as used in imperative programming). Additionally, it is
possible to specify rules to choose between branches during search (i.e., heuristics).

CSP’s in music are used to solve harmonic, rhythmic or melodic problems. In addition, they
can be used for automatic generation of musical structures satisfying a set of rules. For instance,
the classical All-interval series[23], where we need to find 12 different notes with different intervals.

In order to solve a CSP we have two approaches. One, is using a Constraint Programming
language such as Prolog or Mozart-Oz[34], and the other one is using constraint solving tool-kits
usually written in C++, but attachable to traditional programming languages such as Common
Lisp.

1.3.2 Motivation: A graphical representation for CSP’s

Using Constraint Programming languages or constraint solving tool-kits to solve CSP’s is difficult
because they usually require deep knowledge on C++ or logic programming. For that reason,
several graphical constraint solving libraries for OpenMusic (OM) have been developed in the last
decade.

Currently, there are four tools to solve CSP’s in OpenMusic. OmSituation[37] generates
music based on constraints, OmRc[40] finds structures corresponding to rhythmical constraints,
OmClouds[54] finds approximated solutions to a CSP, and OMBacktrack 1 is a wrapper for the
constraint solving library Screamer[48].

A good graphical constraint solving library to solve musical CSP’s should provide graphical
representations to choose heuristics for the search, post multiple kind of constraints graphically
without using loops and recursion, and perform search and propagation using state-of-art algo-
rithms.

Unfortunately, OmRC and OmSituation are designed to solve specific problems. OmBacktrack
is no longer available for current versions of OM. Finally, OmClouds does not always provide a
solution satisfying all the constraints, which is necessary for many musical problems.

1.3.3 Our solution: Extending Gelisp

Gelisp is a library to solve CSP’s Common Lisp. Gelisp is a wrapper for the constraint solving
library Gecode[45]. It was originally developed by Rueda in 2006 and we modified it to work with

1http://www.ircam.fr/equipes/repmus/
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current versions of OM and Gecode. Furthermore, we added support to model CSP’s and search
heuristics graphically. The novelty of Gelisp is to provide an efficient graphical representation for
search heuristics, optimization criteria, and high-level constraints such as “all the intervals of a
sequence must be different”.

Gecode works on different operative systems and is currently being used as the constraint
library for Alice[33] and Mozart-Oz, therefore it is very likely to be maintained for a long time.
Furthermore, it provides an extensible API, allowing us to create new propagators and user-defined
search engines. For instance, we can extend Gecode to reason about trees and graphs. Finally,
Gecode’s performance is better than the constraints solving tool-kits used in Sicstus Prolog and
Mozart-Oz (according to the benchmarks presented in http://www.gecode.org).

1.4 Contributions

1.4.1 Gecol extension

Our first approach to provide an interface for Gecode to Common Lisp was extending Gecol to work
with current version of Gecode. Examples, sources, and binaries can be found at http://common-
lisp.net/project/gecol/

1.4.2 Gelisp extension

An extension to Gelisp to work with current version of Gecode. We also provide a graphical interface
for OpenMusic. Examples, sources, and binaries can be found at http://gelisp.sourceforge.net. An
article about Gelisp is to be published next year [52].

1.4.3 Ntccrt

A real-time capable interpreter for ntcc. Examples, sources and binaries can be found
at http://ntccrt.sourceforge.net. An article about Ntccrt is to be published next year [53].

1.5 Organization

In what follows, we describe the structure of this report. Chapter 2 presents the background
describing briefly the strategies to implement lightweight threads, CCP, ntcc, Gecode. Chapter
3 presents and evaluates two alternatives to implement lightweight threads for Common Lisp,
presenting results and tests for each one. Chapter 4 explains different strategies to implement
a real-time capable interpreter for CCP and an application. Chapter 5 explains the design and
implementation of Ntccrt and gives three applications in the computer music domain. Chapter 6
explains the design and implementation of Gelisp and presents two applications solved graphically.
Chapter 7 gives some concluding remarks and explains future work.
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Chapter 2

Background

2.1 Implementation techniques for Lightweight threads

In this chapter, we explore different strategies to implement lightweight threads. We also explain
the advantages and disadvantages of each of them.

2.1.1 Event-driven programming

Event-based programs are typically driven by a loop that polls for events and executes the appro-
priate callback when the event occurs. This means that the flow of the program is determined by
sensor outputs, user actions, or messages from other programs.

They tend to have more stable performance under heavy load than threaded programs according
to [10] . However, when they are used with synchronous I/O operations, it is necessary to rewrite
the program to use asynchronous I/O .

On the other hand, Ron von Behren et al [57] argue that although Event-based programs have
been used to obtain good performance in high concurrency systems, if there is a good implementa-
tion of threads with a tight integration with the compiler, it is possible to obtain similar o higher
performance with threads than with events.

In order to implement this model it is required: a dispatcher, which takes the events and call
the appropriate handler; an event queue, which stores the events when the dispatcher is busy; and
different handlers for each type of events [13] . The diagram of figure 2.1 represents this model.

events
generator

dispatcher

handler 1 handler 2 handler n

event queue

events events events

Figure 2.1: Event Driven Programming Control Flow

When the events can change the “state” of the program, it is necessary to have a Finite State
Machine (FSM) to keep track of the current state of the program [13].
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2.1.2 Scheduler activations

Scheduler activations [3] is a threading mechanism that maps N user level threads into some M
kernel threads. This takes the advantages from the kernel-level (“1:1”) and the user-level (“N:1”)
threading. Scheduler activations for Linux OS were implemented in two modules: a patch for
the linux kernel and the user-level part was developed by the Informatics Research Laboratory of
Bordeaux (LABRI) in a library called Marcel threads [6]. The disadvantage is that they are not
OS portable.

2.1.3 Co-routines

A co-routine is a non-preemptive thread. They generalize subroutines to allow multiple entry
points, suspending and resuming execution at certain locations [20].

In the C language there is a library called the Portable Coroutine Library (libpcl). High-order
programming languages such as Python and Ruby have support for them also. Scheme coroutines
are made using continuations, which are a functional object containing the state of the computation.
When the co-routine is evaluated, the store computation is restarted where it left off [16].

2.1.4 Stack-based threads

Each thread is represented by using an structure that contains thread ID, execution context, priority
and the thread stack. Additionally, there is an scheduler to allow the concurrent execution of all
threads[49].

Thread scheduling

The scheduler is in charge of providing a fair execution to all threads, a fair execution means that
every thread will eventually execute. There is a runnable pool containing the runnable threads,
when a new thread is created it is added to the runnable pool. There is also a suspended pool,
where the threads that are “waiting” remain until their waiting condition becomes true. Finally,
there are a terminated pool and the current thread [44], [56]. Figure 2.2 explains the thread states
and their transitions .

suspend

terminate

preempt

schedulecreate
currentrunnable terminated

suspended

wake

Figure 2.2: Thread states and their transitions [44]

There are many scheduling policies such as Priorities, First Come First Served, Shortest Process
Next, Shortest Remaining Time, and Round Robin (RR) [30]. We will focus in RR, which makes
a fair execution to all threads and it is commonly used to model interactive systems. RR keeps all
the threads in a queue and it guarantees that processor time is put equitably over the threads.

The time slice given to each thread cannot be too small because it will cause an overhead of
queue management, however it cannot be too large because it will not be useful for interactive
systems. There is another approach, the counting approach; which counts computation steps and
give the same number of them to each thread, it is often used in real-time systems [56].

Priorities are important when we need to give more processor time to some threads than others.
But, high priority threads should not starve low priority threads. When we want to mix priorities
and Round Robin, there are different possible approaches: processes on an equal priority are
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addressed in a round-robin manner; the time slice duration can change according to the priority;
and the one used by Mozart Oz, where every tenth time slice of a high priority thread, a medium
priority thread is give one slice and similarly with the medium and low priority threads [56].

When a thread creates a child thread, the child is given the same priority as the parent to avoid
timing bugs such as the priority inversion, which is an scenario where a low priority task holds a
shared resource that is required by a high priority task, causing the delayed execution of the high
priority task.

Synchronization

Multiple solutions have been proposed for synchronization, such as: semaphores, monitors, message-
passing, locks, etc. All of them accesses to a shared state, making very difficult to write correct
concurrent programs. Another approach is declarative concurrency [55].

It consists of several threads of statements executing concurrently and communicating via a
shared store, the store only contains logic variables. Those variables have two states: bound and
not bound. When a variable is required for a computation and it has not been bound, the thread
yields until the variable is bound, this way the synchronization is achieved.

2.1.5 Protothreads

Protothreads [11] propose an abstraction that reduces the complexity of Event-based programs.
Using protothreads, it is possible to perform conditional blocking on top of Event-based programs,
without the overhead of multi-threading which includes multiple stacks. They use local continua-
tions, which behaves like continuations, but they do not save the stack.

2.1.6 Virtual machines with thread support

There are virtual machines with thread support such as the Simple Extensible Abstract Machine
(SEAM) [7]. SEAM has been used to implement a naive Java Virtual Machine and the Alice
language [21]. SEAM supports the concurrent execution of multiple threads in the traditional way:
there is a stack of activation records, each record correspond to task to be executed. The scheduler
coordinates the execution of multiple threads and the preemption. There are too disadvantages
with SEAM : When a thread is blocked in a function outside SEAM, all the other threads get
blocked too, and it does not provide good abstractions for implementing a system that needs to be
concurrent with respect to external processes.

2.2 Concurrent Constraint Process (CCP)

Concurrent Constraint Programming (CCP) is as a model for concurrent systems. In CCP, a
concurrent system is modeled in terms of constraints over the system variables and in terms of
agents interacting with partial information obtained from those variables. A constraint is a formula
representing partial information about the values of some of the system variables.

2.2.1 Relation between propagators and CCP

Programming languages based on the CCP model, provide a propagator for each constraint.
Propagators can be seen as operators reducing the set of possible values for some variables. For
instance, in a system with variables pitch1 and pitch2 taking MIDI values (each MIDI pitch unit
represents a semi-tone), the constraint pitch1 > pitch2 + 2 specifies possible values for pitch1 and
pitch2 (where pitch1 is at least one tone higher than pitch2). The CCP model includes a set of
constraints and a entailment relation |= between constraints. This relation gives a way of deducing
a constraint from the information supplied by other constraints.

The idea of the CCP model is to accumulate information in a store. This information is
represented by constraints. The information on the store can increase but it cannot decrease.
Concurrent processes interact with the store by either adding more information or by asking if
some constraint can be deduced from the current store. If the constraint cannot be deduced,
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this process blocks until there is enough information to deduce the constraint [36]. Consider for
example, 4 agents interacting concurrently (fig. 2.3). The processes tell (pitch1 > pitch2 + 2) and
tell(pitch2 > 60) add new information to the store. The processes ask(pitch1 > 58) → P and
ask(pitch1 = 58) → Q launch process P and Q respectively, when their condition can be entailed
from the store. The reader may notice that process ask(pitch1 > 58) → P launches process P ,
but the process ask(pitch1 = 58) → Q will be suspended until its condition can be entailed from
the store. (fig. 2.4).

STORE

tell pitch2 > 60

tell pitch1  > pitch2 + 2

ask pitch1 > 58 do P

ask pitch1 = 58 do Q

Figure 2.3: Process interaction in CCP

Formally, the CCP model is based on the idea of a constraint system. “A constraint system is a
structure < D,`, V ar > where D is a (countable) set of primitive constraints (or tokens), `∈ DxD
is an inference relation (logical entailment) that relates tokens to tokens and V ar is an infinite set
of variables” [41]. A (non primitive) constraint can be composed out of primitive constraints.

According to Rueda, the formal definition of CCP does not specify which types of constraints
can be used. Thus, a constraint system can be adapted to many needs depending on the set D.
For instance, finite domain (Fd) constrains provides expressions such as x ∈ R, where R is a set of
ranges of integers. Constraints systems may also include expressions over trees, graphs, sets, etc
[35].

STORE
pitch2 > 60

pitch1  > pitch2 + 2

P

ask pitch1 = 58 do Q

Figure 2.4: Process interaction in CCP (2)

2.2.2 Disadvantages

Valencia and Rueda argue that the CCP model posses difficulties for modeling reactive systems
where information on a given variable changes depending on the interactions of a system with its
environment. The problem arises because information can only be added to the store, not deleted
nor changed [39]. Since a machine improvisation system is a reactive system, we need to explore
extensions of CCP to model this system in an easy and natural way.

2.3 Non-deterministic Timed Concurrent Constraint (ntcc)

ntcc introduces the notion of discrete time as a sequence of time-units. Each time-unit starts with
an empty store and it adds to the store the information received from the environment (i.e., the
input received each time-unit), then it executes all the processes corresponding to that time-unit.
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Opposed to the CCP model, in ntcc we can model variables changing through time, because they
can change values from a time-unit to another.

2.3.1 Examples

The tell agent

Following, we give some examples of how the computational agents of ntcc can be used. Further
formal definitions can be found in [25] and a summary can be found in table 2.1. Using the tell
agent is possible to add constraints such as tell(pitch1 = 60) (meaning the pitch1 must be equal
to 60) or tell(60 < pitch2 < 100) (meaning that pitch2 is an integer between 60 and 100).

The when agent

The when agent can be used to describe how the system reacts to different events, for instance
when pitch1 = 48 ∧ pitch2 = 52 ∧ pitch3 = 55 do tell(CMayor = true) is a process reacting as
soon as the pitch sequence C, E, G (represented as 48, 52, 55 in MIDI notation) has been played,
adding the constraint CMayor = true to the store in the current time-unit.

Agent Meaning
tell (c) Adds the constraint c to the current store
when (c) do A if c holds now run A
local (x) in P runs P with local variable x
A ‖ B Parallel composition
next A Runs A at the next time-unit
unless (c) next A unless c can be inferred now, run A∑
i∈I

when (ci) do Pi Non deterministically chooses Pi s.t. (ci) holds

*P Delays P indefinitely (not forever)
!P Executes P each time-unit (from now)

Table 2.1: ntcc Agents

The parallel agent

Parallel composition (‖) allows us to represent concurrent processes, for instance tell (pitch1 =
62) ‖ when 48 < pitch1 < 59 do tell (Instrument = 1) is a process telling the store that pitch1 is
62 and concurrently reacts when pitch1 is in the octave -1, assigning instrument to 1. The number
one represents the acoustic piano in MIDI notation.

The next agent

The next agent is useful when we want to model variables changing through time, for instance
when (pitch1 = 60) do next tell (pitch1 <> 60), means that if pitch1 is equal to 60 in the current
time-unit, it will be different from 60 in the next time-unit (see figure 2.5).

The unless agent

The unless agent is useful to model systems reacting when a condition is not satisfied or it cannot
be deduced from the store. For instance, unless (pitch1 = 60) next tell (lastpitch <> 60), reacts
when pitch1 is different from 60 or it cannot be deduced from the store (i.e., pitch1 was not played
in the current time-unit), telling the store in the next time-unit that lastpitch is not 60 (fig. 2.6).
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STORE

tell (pitch1 = 52)

when 48 < pitch1 < 59 do
 tell (instrument = 1)

STORE

when 48 < pitch1 < 59 do
 tell (instrument = 1)

pitch1 = 52

STORE

 tell (instrument = 1)

pitch1 = 52
STORE

pitch1 = 52

instrument = 1

Figure 2.5: Tell, when, and parallel agents in Ntcc

STORE

unless pitch1 = 60 next 
tell (pitch1 <> 60)

STORE
pitch1 <> 60

STORE

unless pitch1 = 60 next 
tell (pitch1 <> 60)

STORE
pitch1 <> 60

STORE

unless pitch1 = 60 next 
tell (pitch1 <> 60)

STORE

pitch1 = 61

pitch1 = 60

a) There is not information about pitch1

b) pitch1 is equal to 61

c) pitch1 is equal to 60

CURRENT TIME UNIT NEXT TIME UNIT

Figure 2.6: unless agent in ntcc

The star agent

The star (*) agent can be used to delay the end of a music process indefinitely, but not forever. For
instance, ∗tell (End = true). The ! agent executes a certain process each time-unit. For instance,
!tell (PlaySong = true). The

∑
agent is used to model non- deterministic choices. For instance,

!
∑
i∈{48,52,55} when true do tell (pitch = i) models a system where each time-unit, a note is

chosen from the C major chord (C,E or G) to be played (fig. 2.7). !
∑
i∈{48,52,55} when true do

tell (pitch = i) can be expressed as tell (pitch = 48) + tell (pitch = 52) + tell (pitch = 55).

Derived agents

The agents presented in table 2.2 are derived from the basic operators. The agent A + B non-
deterministically chooses to execute either A or B. The persistent assignation process x ← t
change the value of x to the current value of t in the following time units. In a similar way, the
agents in table 2.3 are used to model cells. Cells are variables which value can be re-assigned in
terms of its previous value. For instance, x : (z) creates a new cell x with initial value z, x :← g(x)
change the value of a cell, and exchg[x, y] exchanges the value of cell x and z. The reader may
notice that using cells is different from x← t which changes the value of x only once.
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STORE

tell (pitch1 = 48) +
tell (pitch1 = 52) +
tell (pitch1 = 55)

STORE

tell (pitch1 = 48) +
tell (pitch1 = 52) +
tell (pitch1 = 55)

STORE

tell (pitch1 = 48) +
tell (pitch1 = 52) +
tell (pitch1 = 55)

STORE

tell (pitch1 = 48) +
tell (pitch1 = 52) +
tell (pitch1 = 55)

pitch1 = 52 pitch1 = 55

pitch1 = 48
pitch1 = 55

TIME UNIT = 0 TIME UNIT = 1

TIME UNIT = 2 TIME UNIT = 3

Figure 2.7: Example of the execution of a non-deterministic agent in ntcc

Agent Meaning
A + B

∑
i∈1,2

when true do (when i = 1 do A ‖ when i = 2 do B )

x← t local v in
∑
v

when t = v do next !tell (x = v)

Table 2.2: Derived ntcc Agents

Agent Meaning
x : (z) tell(x = z) ‖ unless change(x) next x : (z)
x :← g(x) local v

∑
v

when x = v do (tell change(x) ‖ next x : g(v) )

exchg[x, y] local v
∑
v

when t = v do (tell(change(x) ‖ (tell(change(y)

‖ next (x : g(v) ‖ y : (v))

Table 2.3: Cell Definition

Recursive definitions

Finally, a basic recursion can be defined in ntcc with the form q(x)
def
= Pq, where q is the process

name and Pq is restricted to call q at most once and such call must be within the scope of a
“next”. The reason of using “next” is that we do not want an infinite recursion within a time-
unit. Recursion is used to model iteration and recursive definitions. For instance, using this basic
recursion, it is possible to write a function to compute the factorial function.

2.4 Generic Constraint development Environment (Gecode)

Gecode is a constraint solving library written in C++. Gecode provides efficient state-of-art
propagators for multiple constraints and configurable search-engines.

2.4.1 Constraints as Propagator Agents (CPA)

“Gecode is based on the constraints as propagator agents (CPA). CPA systems provide a propagator
for each type of user defined constraint. Propagators translate a constraint into basic constraints
supplying the same information. Basic (finite domain) constraints have the form x ∈ [a..b]. For
instance, in a store (a set with all the constraints asserted) containing pitch1 ∈ [36..72], pitch2 ∈
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[60..80], a propagator for the constraint pitch1 > pitch2 + 2 would add constraints pitch1 ∈ [63..72]
and pitch2 ∈ [60..69].

As described in the above example, the action of propagators ends up narrowing down the set
of possible values for each variable. This, however, does not guarantee that it will eventually be
inferred a single value to each variable. CPA systems thus include search engines. The purpose of a
search engine is to choose additional basic constraints to add into the store until all variables have
reduced their domain into a single value. Using them we can find one, many, or all the solutions
for a CSP.”[35] The reader may notice that there is a similarity between the CPA and the ntcc
models. Both of them are based on concurrent agents working over a constraint store.

2.4.2 Advantages

Gecode works on different operative systems and is currently being used as the constraint library
for Alice[33] and Mozart-Oz, therefore it is very likely to be maintained for a long time. Further-
more, it provides an extensible API, allowing us to create new propagators and user-defined search
engines. For instance, we can extend Gecode to reason about trees and graphs. Finally, Gecode’s
performance is better than the constraints solving tool-kits used in Sicstus Prolog and Mozart-Oz
(according to Benchmarks presented in http://www.gecode.org).
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Chapter 3

Developing real-time capable
lightweight (lw) threads for
Common Lisp

We explored a variety of strategies to implement lw threads in Common Lisp. Since OpenMusic
[5] and Omax [4] are written in Common Lisp, developing lw threads will allows them to take
advantage of lightweight concurrency on their applications.

OpenMusic and Omax are applications developed by Ircam in Common LISP. Currently, they
use Lispworks (a commercial Common Lisp distribution). In order to keep our interpreters com-
patible with OpenMusic and Omax, we have explored the possibility of implementing generic
lightweight threads for Common Lisp, testing their performance in Lispworks Professional 5.02
under Mac OS X for Intel.

3.1 Using continuations

3.1.1 Motivation

It is possible to simulate concurrent threads using continuations and UNIX signals (to provide
preemption). The continuation of each thread must be saved. This way they can be invoked at a
later time. When a thread must block, we can capture the continuation using the call/cc macro (
provided by libraries such as cl-cont) since continuations are not natively implemented in Common
LISP. This approach was used before to implement a concurrent version of ML called SML/NJ [8].

3.1.2 Disadvantages

Using continuations posses a few problems. They only capture the state that describes the pro-
cessor, but they do not capture the state of the I/O systems [47]. Another issue is the lack of
a native implementation in Common Lisp. Even though, the Continuation Passing Style (CPS)
can be obtained writing Lisp macros, it creates an overhead leading to a high memory and time
consumption.

3.1.3 Tests

Following, we present some tests comparing Lisp code with CPS code.

Adding the elements of a list

Figure 3.2 describes the time consumption of a function adding all the elements of a list containing
5000 and a list containing 20000 elements. We executed several times both the Lisp code and the
CPS code (generated by cl-cont) in Lispworks and SBCL. Results were obtained after several
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tests under Mac OS 10.5 using an Imac Intel Core 2 duo 2.8 ghz, Lispworks Professional 5.02, and
SBCL 1.012. We concluded that Lispworks performance is not very good for CPS code, probably
because the compiler is not optimized to handle CPS code. Therefore, we do not recommend using
this approach to implement lightweight threads for Common Lisp. The reader should be aware
that both the Lisp code and the CPS code were previously compiled.

Figure 3.1: Traversing a List of n elements. CSP done by using cl-cont.

3.2 Using Event-Driven Programming

3.2.1 Motivation

Each program is written as an event loop, which runs by taking an event and executing some code
depending of the type of event, and then posting one or more new events. Lightweight threads can
be implemented this way, having several event queues (one for each thread). The scheduler picks
one event from one queue to execute each time around.

In order to achieve thread synchronization, we made a wait and a bind event working on top of
dataflow variables. Asynchronous send and blocking receive can be achieved assigning a mailbox
to each thread (Lispworks have an API for mailboxes already implemented).

Our implementation of lightweight threads for Common Lisp is composed by: a runnable
thread queue, current thread variable, and a hash table to keep a relation between a lock and the
threads waiting for that lock. The threads are modelled by a structure containing an identifier,
an status (suspended, running, terminated), a reference to a synchronization variable (when it is
suspended), an event queue and a priority.

(defstruct thread name status whoamiwaitingfor EventQueue Priority)

We also provide 6 simple kind of events: execute, bind, wait, let, waitforlock and dotimes with
a handler associated to each of them. The handler for the execute event is simple, it evals the
instruction encapsulated in this event. Notice that this leaves the responsibility of using it only for
simple instructions to the programmer. For instance, encapsulating an infinite loop or an infinite
recursion inside this event leads to an unfair scheduling. The bind and the lock events are used
for synchronization and the let and dotimes events help fragmenting blocks containing multiple
instructions.

3.2.2 Disadvantages

Although transforming Common Lisp code to event driven programming came up being efficient,
the lack of generality of this approach, makes it inappropriate for many applications. For instance,
it will be necessary to create events for go to jumps, for exception handling, asynchronous signals,
loop macros, complex programs.
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3.2.3 Tests

We made some tests for the event-driven programming interface for Common Lisp. We compared
it with Lisp processes and with a sequential program doing the same.

Concurrent matrix multiplication

The code bellow represents an implementation of a multithreaded matrix multiplication algorithm.
For each multiplication necessary, a new thread is created (n3 threads are created for two square
matrices of size n) and synchronization is provided by locks. This is the implementation using
Lispworks processes as the threading library

(defun runrunrun ()

(let ((thelock (mp:make-lock)) (thelock2 (mp:make-lock)))

(dotimes (i n ) (dotimes (j n ) (dotimes (k n )

(mp:process-run-function "Cik = Aij*Bjk" nil

(lambda (II JJ KK) (mp:process-lock thelock)

(setf (aref *C* II KK) (+ (aref *C* II KK) (* (aref *A* II JJ) (aref *B* JJ KK) )))

(mp:process-unlock thelock) (mp:process-lock thelock2)

(setf *counter* (- *counter* 1)) (mp:process-unlock thelock2)) i j k))))))

Contrasting to the implementation above, our implementation uses the event driven programming
interface described previously. Threads do not not use locks, since each setf instruction is made
atomically with the execute event. Instead, they uses dataflow variables (having two states, bind
or not bind) to be synchronized with another thread in charge of telling the user when the execution
of all the threads is done.

Figure 3.2 compares the execution times of the Lispwork processes (native medium weight
threads provided by Lispworks), our implementation of event driven programming and the se-
quential version of the matrix multiplication algorithm in an Intel 2.8 GHz using Mac OS 10.5.2,
running Lispworks 5.02 professional. Additionally, we tested simple-processes provided by
Lispworks multiprocessing API, but they were very slow, taking around 10 seconds for 16 threads.
Furthermore, they are very unstable in Lispworks 5.0 under Mac OS X, often crashing the whole
IDE.
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Figure 3.2: Multithreaded matrix multiplication (time in seconds)
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Chapter 4

Developing real-time capable
interpreters for CCP

CCP is the predecessor of ntcc. CCP has been used to model a variety of systems. It is also
the base of programming languages such as Mozart-Oz. For that reason, we started by developing
interpreters for ccp and comparing their performance, before developing a real-time interpreter for
ntcc.

In order to develop an interpreter for CCP, we need to provide a way to encode the ask processes,
the tell processes and the parallel processes in Gecode. Ask processes can be easily represented in
Gecode taking advantage of the reified propagators and tell processes can be represented with non-
reified propagators. Additionally, it is important to mention that Gecode is not thread safe, being
necessary to add locks for all the concurrent reading and writing operations, adding an overhead
when using threads. Another fact is the event driven nature of Gecode itself [45], allowing us to
express CPP and ntcc, without writing code for a dispatcher nor event queues. In this section, we
will explain the different approaches explored to develop a generic real-time interpreter for CCP.
Further details about how to encode processes as propagators are presented in next chapter.

4.1 Our previous approaches

We tried some combinations of programming languages (C++ and Common Lisp) and concurrency
models (threads and event-driven programming).

4.1.1 Gecode interfaces to Common Lisp

The first problem we faced when designing the interpreter was interfacing Gecode to Common Lisp
(since OpenMusic is written on Common Lisp). First, we redesigned the Gecol (an Opensource
interface for Gecode 1.3.2 originally developed by Killian Sprote) library to work with Gecode
2.2.0 (current version of Gecode). Unfortunately, Gecol 2 is still a low-level API as Gecol. For
that reason, using it requires deep knowledge of Gecode and it has a difficult syntax. To fix that
inconvenient, we decided to upgrade the Gelisp library to Gecode 2.2.0 [35], originally developed by
Rueda for Gecode 1.3.2. We successfully used this library to solve Constraint Satisfaction Problems
(CSP) in the computer music domain . This library is easier to use and could be the foundation
of a new version of the interpreter. Both, Gecol and Gecol 2 can be found at http://common-
lisp.net/project/gecol/.

4.1.2 Threads in Lisp and C++

Using Gecol 2, we developed a prototype for the ntcc interpreter in Lispworks 5.0.1 professional
using Lispworks processes (based on pthreads) under Mac OS X. In a similar way, we made an-
other interpreter using C++, Gecode, and Pthreads (a portable implementation of medium weight
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threads in C) for concurrency control. In both threaded prototypes the tell agents are modeled as
threads waiting until the store is free, which then add a new constraint to the store.

On the other hand, the when processes are threads waiting until the store is free and asking
if their condition can be deduced from the store. If they can deduce its condition they execute
their continuation, else they keep asking (see figure 4.1). The conditions for the when processes are
represented by boolean variables linked to reified propagators (recall that C ↔ b is a reified prop-
agator for the constraint C). Fortunately, Gecode provides reified propagators for most constraints
used in multimedia interaction (e.g., equality and boolean constraints).

GECOL

GECODE STORE

L
I
S
P

C
+
+

LISPWORKS
LOCK

TELL 1
TELL 2

ASK NASK 1

TELL N

PTHREADS
LOCK

TELL 1
TELL 2

ASK NASK 1

TELL N

C
+
+

a) Using LispWorks processes b) Using Pthreads in C++

Figure 4.1: Threaded ntcc interpreters using Lispworks and using C++

Since Gecode is not thread-safe (it does not support the concurrent access to its variables and
functions), we protect the access to a Gecode Space with a lock, synchronizing the access to Gecode.
However, we still have a problem. Each time we want to ask if a condition can be deduced from the
Store, we call Gecode’s status function (a Gecode function used to calculate a fixpoint), because
propagators in Gecode are “lazy”(they only act by demand). The drawback of both threaded
implementations (in C++ and Lispworks) is the inefficiency of using the status function each time
they want to query if the “when” condition can be deduced. Making extensive use of the status
function would be inefficient even if we use an efficient lightweight threads library such as Boost
(http://www.boost.org) for C++ .

4.1.3 Event-driven programming in Lisp

After discarding the threading model, we found a concurrency model giving us better performance.
We chose event-driven programming for the implementation of the next prototype. This model
is good for a ntcc interpreter because we do not use synchronous I/O operations and all the
synchronization is made by the ask processes (when,

∑
, and Unless) using constraint entailment.

This prototype works on a very simple way. There is an event queue for the ntcc processes, the
processes are represented by events, and there is a dispatcher handling the events. The handler for
the When events checks if the boolean variable b, representing their waiting condition, is assigned.
If it is not assigned, it adds the same When event to the queue, else it checks the value of b. If
b is true, it adds the continuation of the When events to the event queue, otherwise no actions
are taken. On the other hand, the handler for Tell events add a constraint to the store. The
store is represented as a Gecode Space. Finally, the handler for the Parallel events adds all its
sub-processes to the event queue (see figure 4.2).

Using event-driven programming led us to a faster and easier implementation of ntcc than the
approaches presented before. However, we realized that instead of creating handlers for tell, ask,
and parallel; and a dispatcher for processing the events, we could improve the interpreter’s per-
formance taking advantage of the dispatcher and event queues provided by Gecode for scheduling
its propagators.
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Figure 4.2: ntcc interpreter using event-driven programming and Gecol 2

4.2 Our solution: Encoding processes as Gecode propaga-
tors

After considering multiple solutions, we found out that encoding processes as Gecode propagators
is a generic implementation of the CCP interpreter capable of real-time. The tell, ask and parallel
processes are represented by classes.

We defined an AskBody class, which is a superclass for the tell, ask and parallel classes. This
way we can pass any object inhering from this class to the ask propagator, making it generic. We
do not use function pointers, because then it would be also required to pass the arguments to those
functions and it will be less generic.

We also defined an interface (the superclass tell) and three classes inhering from it: tellEqual,
representing tell (a = b); tellSetIn, representing tell (a ∈ B); and tellGE, representing tell (a > b).
Other kind of tell agents can be easily extended inheriting from the tell superclass and declaring
an Execute method. The Execute method is called by an ask object when a tell is nested in an
ask or it is called by a parallel object when it is nested in a parallel object.

In order to represent the ask processes, we have developed a generic ask class, with a constructor
receiving a pointer to an AskBody object and a pointer to a constraint object. Both of them are
passed to the ask propagator, when its Execute method is called. The AskBody object P is the
continuation of the ask and the constraint object b is the ask guard.

These classes inherit from the constraint class: SetIn for a ∈ B ↔ b, EQ for a = c ↔ b, GQ
for a ≥ c↔ b, GE for a > c↔ b, NOT for not(a)↔ b, AND for a ∧ c↔ b and OR for a ∨ c↔ b.
This can also be extended by inheriting from the constraint class and declaring a get boolean()
method, which returns a GECODE Boolean variable.

Once b is assigned, the propagator checks its value. For a true value, it calls the Execute
method of P (which could be another ask, a tell or a parallel). Then the ask propagator will go
to the subsumed state.

ExecStatus AskPropagator::propagate(Space* home, ModEventDelta med) {

if (b.one()) {P->Execute(home); assert(b.assigned()); goto subsumed;}

if (b.zero()) {assert(b.assigned()); goto subsumed; }

return ES_FIX;

subsumed:

return ES_SUBSUMED(this,sizeof(*this)); }

We compared different interpreters running the program to find, concurrently, a path in graph
(fig. 4.3). We present the execution times of a Common LISP recursive function , an implementa-
tion using Concurrent Constraint Programming in Mozart-OZ, an implementation using our own
dispatcher in Common LISP and the implementation in C++ using the ask propagator. The
reader may notice that the performance of the interpreter using the ask propagator is much faster
than all the other ones. Therefore, we recommend encoding processes as Gecode propagators for
real-time applications using the CCP model.
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Figure 4.3: Comparing different CCP interpreters (time in seconds)

4.3 Applications

4.3.1 Finding paths in a graph concurrently

An application where we use the CCP interpreter to define, concurrently, paths in a graph. The
idea is having one CCP process for each edge. Each Edge Process(i, j) sends forward “signals”
to its successors and back “signals” to its predecessors. When an Edge Process(i, j) receives a
back “signal” and a forward “signal”, it tells the store that there is a path and adds j to the set
nexti (A finite set variable containing the successors of the vertex i). After propagation finishes,
we iterate over the resulting sets to find different paths. For instance, we can build a path in the
graph getting the lower-bound of each set using the variable nexti.

Formal definition

This process represents an edge in a graph.

Edge Process(i, j)
def
=

when Forwardi ∧Backj do (tell (it exists = true) ‖ tell (j ∈ Nexti) )
‖ when Forwardi do tell (Forwardj = true)
‖ when Backj do tell (Backi = true)

The Main process finds a path between the vertices a and b in a graph represented by edges
(a set of pairs (i, j) representing the graph edges). The Main process calls Edge Process(i, j)
for each (i, j) ∈ edges and concurrently, it sends forward “signals” to processes with the form
Edge Process(a, j) and back “signals” to processes with the form Edge Process(i, b). Notice that
sending and receiving those “signals” is greatly simplified by using tell, ask and the CCP store.

Main(edges, a, b)
def
=∏

(i,j)∈edges
(Edge Process(i, j))

‖ tell Forwarda = true
‖ tell Backb = true

Example

Following, we give an intuition about how this system works. To find a path between the vertices
1 and 5 in figure 4.4, it starts by sending forward “signals” to all the processes with the form
Edge Process(1, b) and back “signals” to all the processes with the form Edge Process(a, 5). As
soon as an Edge Process receives a back “signal” and a forward “signal”, it tells the store that
there is path (i.e., tell (it exists = true) ).
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Figure 4.4: Example of finding paths in a graph concurrently (1)

Additionally, the reader may notice that there is not a path between vertices 1 and 5 in figure
4.5. In this example, the back “signals” sent to processes Edge Process(a, 5) are not received by
any process. Therefore, none of the Edge Processes receives a back and a forward signal.
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4

Figure 4.5: Example of finding paths in a graph concurrently (2)

After calculating a fix point, we can ask the constraint system for the value of it exists. If
the variable is not bounded, we can infer that there is not a path.
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Chapter 5

Developing a real-time capable
interpreter for ntcc

During the last decade, three interpreters for ntcc have been developed. Lman [24] by Hurtado
and Muñoz in 2003, NtccSim (http://avispa.puj.edu.co) by the Avispa research group in 2006, and
Rueda’s sim in 2006. They were designed to simulate ntcc models, but they were not made for
real-time interaction.

The idea is not creating a new programming language based on ntcc. Our goal is creating
interpreters on programming languages, taking advantage of the libraries (e.g., GUI or Midi/Audio
processing) available for them.

When designing ntcc interpreters, we need to find a constraint solving library or programming
language allowing us to check stability (i.e., know when a time-unit is over), check entailment
(i.e., know if a constraint can be deduced from the store), post constraints, and synchronize the
concurrent access to the store.

The authors of thentcc model for interactive scores proposed to use Gecode as a constraint
solving library for future ntcc interpreters and creating an interface for Gecode to OpenMusic.
Furthermore, they propose extending Lman ( only runs under Linux) to work under Mac OS X
using Gecode.

5.1 History of ntcc Interpreters

5.1.1 Lman

Lman was developed as a framework to program RCX Lego Robots. It is composed of three parts:
an Abstract machine [24], a compiler [27] and a visual language [14]. We took from this interpreter
the idea of having several queues for storing Ntcc’s processes, instead of using threads. Regrettably,
since Lman is implemented in the C language - which does not offer abstractions such as objects -
its extension is difficult. Finally, it only supports finite domain constraints and it was not designed
for real-time interaction.

5.1.2 Ntccsim

NtccSim was used to simulate biological models [17]. It was developed in Mozart-Oz [34]. It is
able to work with finite domains (FD) and a constraint system to reason about real numbers. We
conjecture (it has not been proved) that using Mozart-Oz for writing a Ntcc interpreter it is not
as efficient as using Gecode, based on the results obtained in the benchmarks of Gecode, where
Gecode performs better than Mozart-Oz in constraint solving.
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5.1.3 Rueda’s interpreter

Rueda’s interpreter was developed as a framework to simulate multimedia semantic interaction
applications. This interpreter was the first one representing rational trees, finite domain (FD),
and finite domain sets (FS) constraint systems. One drawback of this interpreter is the use of
Screamer [48] ( framework for constraint logic programming written in Common Lisp) to represent
the constraint systems. Unfortunately, Screamer is not designed for high performance. This makes
the execution of the Ntcc specifications in Rueda’s interpreter not suitable for real-time interaction.

5.2 Our Solution: Encoding ntcc processes as propagators

Our solution, is once again based on a simple but powerful concept. The when and
∑

processes
are encoded as propagators in Gecode. That way Gecode manages all the concurrency required
for the interpreter. Gecode calls their continuations when their conditions are assigned to true.
On the other hand, tell processes are trivially codified to existing Gecode propagators and timed
processes (i.e., those using the agents ∗, !, unless, ←, or next) are managed providing different
process queues for each time-unit in the simulation. This prototype is called Ntccrt.

In this section we focus on describing the data structures required to represent each Ntcc agent.
We also give a brief description of how some processes execute and how some constraint systems
are modeled. Finally, we explain how the interpreter makes a simulation of a Ntcc specification.
Ntcc agents are represented by classes. To avoid confusions, we write the agents with bold font
(e.g., when C do P) and the classes with italic font (e.g., When class).

5.2.1 Finite Domain (FD), Finite Set (FS), and Infinite rational trees

To represent the constraint systems we need to provide new data types. Gecode variables work
on a particular Store. Therefore, we need an abstraction to represent Ntcc variables present on
multiple stores (one for each time-unit) with the same name. Boolean variables are represented
by the BoolV class, FD variables by the IntV class, FS variables by the SetV class, and infinite
rational trees with unary branching by SetV Array, BoolV Array, and IntV Array classes.

5.2.2 Representing the tell agent

After encoding the constraint systems, we defined a way to represent each process. All of them
are classes inheriting from AskBody. AskBody is class, defining an Execute method, which can
be called by another object when it is nested on it. To represent the tell agent, we defined a
super class Tell. For this prototype, we provide three subclasses to represent these processes: tell
(a = b), tell (a ∈ B), and tell (a > b). Other kind of tell agents can be easily defined by inheriting
from the Tell superclass and declaring an Execute method.

5.2.3 Representing the when agent

For the when agent, we made a When propagator and a When class for calling the propagator.
A process when C do P is represented by two propagators: C ↔ b (a reified propagator for the
constraint C) and if b then P else skip (the When propagator). The When propagator checks
the value of b. If the value of b is true, it calls the Execute method of P . Else, it does not take any
action.

5.2.4 Representing the Non-deterministic agent

To represents the
∑

agent (i.e., non-deterministic choice ) we made the parallel conditional
propagator. This propagator receives a sequence of tuples
[< b1, P1 > ... < bn, Pn >], where bi is a Gecode boolean variable representing the condition of a
reified propagator (e.g., a = c↔ bi) and Pi (a pointer to an AskBody object) is the process to be
executed when bi is assigned to true. The propagator executes the process Pk associated to the
first guard that is assigned to true. It means Pk such that k = min({1 < i < n, bi = true}). Then,
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its work is over. If all the variables are assigned to false its work is over too. This propagator
is based on the idea of the Parallel conditional combinator proposed by Schulte [43]. A curious
reader might ask how we obtain a non-deterministic behavior. In order to make a non-deterministic
choice, we pass the parameters to the propagator in a random order.

ExecStatus ParallelConditional::propagate(Space* home, ModEventDelta med) {

int falses = 0;

for(int i=0; i < x.size(); i++)

{ if (b[i].one()) {P[i]->Execute(home); goto subsumed;}

else if (b[i].zero()) {assert(b[i].assigned()); falses++; }}

if (falses == b.size()) { goto subsumed;}

return ES_NOFIX;

subsumed:

return ES_SUBSUMED(this,sizeof(*this));}

5.2.5 Representing local variables

Local variables are easily represented by an instruction allowing the user to create a new “fresh”
variable at the beginning of a procedure. Then, that new variable is going to persist during the
following time-units being simulated. The other variables are declared at the beginning of the
simulation.

5.2.6 Representing timed processes

Timed processes are represented by the TimedProcess class. It is an abstract class providing
a pointer for the current time-unit, for a queue used for the unless processes, for a queue used
for the persistent assignation processes, for a queue used for the other processes, and for the
continuation process. Each subclass defines a different Execute method. For instance, the Execute
method for the Star class randomly chooses the time-unit to place the continuation (an AskBody
object) on its the corresponding process queue.

5.2.7 Representing the unless and persistent assignation agents

The Unless class and the Persistent assignation class are different. Their Execute methods are
called only after calculating a fixpoint. Then, if the condition for the Unless cannot be deduced
from the stable Store, its continuation is executed in the next time-unit. On the other hand, the
Persistent assignation copies the domain D of the variable assigned, when the Store is stable. Then
it assigns D to that variable in following time-units.

5.2.8 Representing ntcc definitions

We also have a Procedure class used to model both, Ntcc simple definitions (e.g., A
def
= tell(a = 2))

and NTCC recursive definitions (e.g., B(i)
def
= B(i+ 1)), which are invocated using the Call class.

For Ntcc recursive definitions, we create local variables simulating call-by-value (as it is specified
in the formalism).

5.2.9 Execution model

In order to execute a simulation, the users write a Ntcc specification in C++, compile it, and then
they call the compiled program with the number of units to be simulated and the parameters (if
any) to the main Ntcc definition. For each time-unit i, the interpreter executes the following steps:
First, it creates a new NTCCSpace (which inherits from the Gecode space class). Then, it creates
a new store and new variables in the store. Then, it process the input (e.g., Midi data coming
from PD or Max ). If i = 0, it calls the main Ntcc definition with the arguments given by the user.

After that, it moves the unless processes to the ith unless queue, moves the persistent
assignation processes to the ith persistent assignation queue, and executes all the remaining
processes in the ith process queue. Then, it calculates a fixpoint (using the status function).Note
how we only call the status function each time-unit, opposed to the previous prototypes.

27



After calculating a fixpoint, it executes the unless processes in the ith unless queue and
executes the persistent assignations in the ith persistent assignation queue. Then, it calls the
output processing method (e.g., sending some variable values to the standard output or through
a midi port). Finally, it deletes the current NTCCSpace.

Although we developed a portable, generic, and real-time capable interpreter for Ntcc; we still
had a problem. In order to write a Ntcc specification, it was necessary to write code in C++ and
then compiling it. This was clearly counter-intuitive for non-computer scientists. For that reason,
we developed a parser on top of OpenMusic, where both computer scientists and musicians, can
write Ntcc specifications in a graphical way. Every specification is automatically compiled as an
stand-alone application using Midishare or as a external for Pd or Max.

In order to make an interface for OpenMusic, we developed a Lisp parser using Common Lisp
macros to easily write an ntcc specification in Lisp syntax and translate it to C++ code. Those
macros also automatically compile a Ntcc program. Then, we created OpenMusic methods (a
graphical representation for Common Lisp methods using the CLOS system) to represent all ntcc
processes, providing a mechanism to generate an input for the parser when the OpenMusic methods
are evaluated.

Finally, to handle Midi streams (e.g., files, Midi instruments, or Midi streams from other
programs) we use the predefined functions in Pd or Max to process Midi. Then, we connect the
output of those functions to the Ntccrt binary plugin. We also provide an interface for Midishare,
useful when running stand-alone programs.

5.3 Applications

5.3.1 The dining philosophers

Synchronization of multiple operations is not an easy task. For instance, consider the problem
of the dining philosophers proposed by Edsger Dijkstra. It consists of n philosophers siting on a
circular table and n chopsticks located between each of them. Each philosopher, is thinking until
it gets hungry. Once he gets hungry, he has to take control of the chopsticks to his immediate left
and right to eat. When he is done eating, he restarts thinking.

The dining philosophers problem mentioned before, has a few constraints. The philosophers
cannot talk between them and they require both chopsticks to eat. Furthermore, a solution to this
problem must not allow deadlocks, which could happen when all the philosophers take a chopstick
and wait forever until the other chopstick is released. Additionally, it must not allow starvation,
which could happen if one or more philosophers are never able to eat.

We propose a solution to this problem for n philosophers, using the Ntcc formalism. All the
synchronization is made by reasoning about information that can be entailed (i.e., deduced) from
the store or information that cannot be deduced (using the unless agent). This way, we can have
a very simple model of this problem on which the synchronization is made declarative.

The recursive definition Philosopher(i, n) represents a philosopher living forever. The philoso-
pher can be in three different states: thinking, hungry or eating. When the philosopher is on the
thinking or eating state, it will choose non- deterministically to change to the next state or remain
on the same state in the next time-unit. On the other hand, when the philosopher is on the hungry
state, it will wait until he can control the first (F) chopstick (left for even numbered and right for
odd numbered). As soon as he controls the first chopstick, it will wait until he can control the
second (S) chopstick. Once he controls both chopsticks, it will change to the eating state in next
time unit.

Formal definition

Philosopher(i, n)
def
=

when Sti = thinking do next
(tell (Sti = hungry) + tell (Sti = thinking))

‖ when Sti = hungry do
when ctrlF = i do

when ctrlS = i do next
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(tell (Sti = eating) ‖tell (ctrlS = i) ‖tell (ctrlF = i))
‖ unless ctrlS = i next

(tell (i ∈ waitS) ‖ tell (ctrlF = i) ‖ tell (Sti = thinking))
‖ unless ctrlF = i next (tell (i ∈ waitF ) ‖ tell (Sti = thinking))

‖ when Sti = eating do next
(tell (Sti = thinking) + (tell (ctrlS = i) ‖ tell (ctrlF = i) ‖ tell (Sti = eating)))
‖ when i%2 = 0 do tell (F = (i− 1)%n) ‖ tell (S = (i+ 1)%n)
‖ when i%2 = 1 do tell (F = (i+ 1)%n) ‖ tell (S = (i− 1)%n)
‖ next Philosopher(i, n)

The Chopstick(j) process chooses non- deterministically one of the philosophers waiting to
control it, when the it is not being controlled by a process.

Chopstick(j)
def
=

unless ctrlj > −1 next∑
x∈Philosophers

when x ∈ waitj donext ( tell (ctrlj = x))

‖ next Chosptick(j))

Finally, the system is modelled as n philosophers and n chopsticks running in parallel. The
philosophers start their lives in the thinking state and all the chopsticks are free.

System(n)
def
=

n∏
i=0

(Philosopher(i) ‖ Chopstick(i) ‖ Sti = thinking ‖ ctrli = −1)

Implementation

Figure 5.1 shows a Pd program where the philosophers are represented as bangs (a graphical
object design to send a message when the user clicks over it or when it receives a message from
another object) and the concurrency control is made by a Ntccrt external. When the philosophers
start eating, the Ntccrt external sends a message to the bang changing its color. Chopsticks are
represented as commentaries for simplicity.

Figure 5.1: Synchronizing the dining philosophers using a Ntccrt external in Pd

5.3.2 CCFOMI: Music Improvisation

Machine improvisation and related style simulation problems usually consider building represen-
tations of time-based media data, such as music, either by explicit coding of rules or applying
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machine learning methods. For machine improvisation it is necessary to perform two activities
concurrently: Stylistic learning and Stylistic simulation

We call Stylistic learning the process of applying such methods to musical sequences in order to
capture salient musical features and organize these features into a model. The Stylistic simulation
process produces musical sequences stylistically consistent with the learned material [36].

A Concurrent Constraint Factor Oracle Model for Music Improvisation (CCFOMI) uses the
Factor Oracle (FO) to store the information of the learned sequences and the Ntcc formalism
to synchronize both phases of the improvisation concurrently. FO is a finite state automaton
constructed in linear time and space. It has two kind of transitions. Factor links are going forward
and following them is possible to recognize at least all the factors from a sequence. Suffix links
are going backwards and they connect repeated patterns of the sequence. Further formal definitions
can be found in [1].

Formal definition

CCFOMI is divided in three subsystems: learning (ADD), improvisation (IMPROV) and playing
(PLAYER) running concurrently. In addition, there is a synchronization process (SYNC) in charge
of synchronization.

It has three kind of variables to represent the partially built Factor Oracle automaton: Variables
fromk are the set of labels of all currently existing factor links going forward from k. Variables
Si are suffix (i.e., backward) links from each state i and variable δk,σi give the state reached
from k by following a factor link labeled σi.

The variables fromk and δk,σi
are modelled as rational trees, allowing us to add elements to

them each time unit. For instance, with the constraints cons(A,B), cons(B,C), and cons(C,D) we
can have a list of three elements [A,B,C, ] and then we can add more elements, adding constraints
to the variable D.

The ADD process is in charge of building the FO (this process models the learning phase) by
creating the factor links, the suffix links and the automata transitions. The specification of this
process can be found in [36]. The learning and the simulation phase must work concurrently. In
order to achieve that, it is required that the simulation phase only takes place once the subgraph
is completely built. The SY NCi process is in charge of doing the synchronization between the
simulation and the learning phase to preserve that property.

Synchronizing both phases is greatly simplified by the used of constraints. When a variable has
no value, when processes depending on it are blocked. Therefore, the SY NCi process is “waiting”
until go is greater or equal than one which means that the PLAY ERi process has played the note
i and the ADDi process can add a new symbol to the FO. The other condition Si−1 ≥ 0 is because
the first suffix link of the FO is equal -1 and it cannot be followed in the simulation phase.

SY NCi
def
=

when Si−1 ≥ −1 ∧ go ≥ i do
(ADDi ‖ next SY NCi+1)

unless Si−1 ≥ −1 ∧ go ≥ i next SY NCi)

The PLAYER (specified in [36]) process simulates a human player, it decides, non - determinis-
tically, each time unit between playing a note or not. When running this model in Pd, we replace
this process by receiving an input (e.g., a midi input) from the environment.

The improvisation process IMPROV (k) starts from state k and non - deterministically, chooses
whether to output the symbol σk or to follow a backward link Sk. A probabilistic version of this
process can be found in [29]. For this work we have modelled a simple improvisation process,
because we are more interested in showing the synchronization between the improvisation phases.

IMPROV (k)
def
=

when Sk = −1 do next (tell (out = σk+1)
‖ CHOICE(k + 1))
‖ when Sk ≥ 0 do next ((tell (out = σk+1) ‖ CHOICE(k + 1)) +∑

σ∈Σ

when σ ∈ fromsk
do ( tell (out = σ)‖ CHOICE(δsk

, σ)))
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‖ unless Sk ≥ −10 next CHOICE(k)

A waitn process is necessary to wait until n symbols have been learned and launch the IMPROV (k)
process.

Waitn
def
= when go = n do IMPROV (n) ‖ unless go = n do next Waitn

The system is modelled as the Player and the Sync process running in parallel with a process
waiting until n symbols have been played to start the Improv process.

Systemn
def
= !tell(S0 = −1) ‖ PLAY ER1 ‖ SY NC1 ‖ Waitn

Implementation

Stand-alone application. NTCC procedures are written in the interpreter in a declarative and
intuitive way. For each procedure in the model (e.g., SY NCi) it is necessary to declare and
instantiate a class inheriting from procedure, where the Execute method is overloaded to receive
the arguments and return the resulting process. To use the rational trees constraint system we use
the create IntV method provided by the store class, allowing us to reference an element in the
rational tree. For instance, the element in the position i − 1 of the variable S can be referenced
as thestore->create IntV (S, i − 1, h). Once the element is referenced, we use it as we would do
with a FD variable (IntV ). Following this intuitive syntax, the Synci process, in charge of the
synchronization between the PLAY ERi and the ADDi processes, is written as

Gecode::Int::AskBody * syncp::Execute()(Space * h,vector<int> intparameters,

vector<variable *> variableparameters ){

int i = intparameters[0];

return ntcc::parallelp( ntcc::whenp(ntcc::ANDc(ntcc::GQc(thestore->create_IntV(S,i-1,h), -1),

ntcc::GQc(go,i)), ntcc::parallelp(ntcc::callp(Add,i),

ntcc::nextnp(ntcc::callp(Sync,i+1)))),

ntcc::unlessp(ntcc::ANDc(ntcc::GQc(thestore->create_IntV(S,i-1,h), -1),

ntcc::GQc(go,i)), ntcc::nextnp(ntcc::callp(Sync,i))) );}

An external for Pd. Rueda et al ran CCFOMI on their interpreter. They wrote Lisp macros
to extend Lisp syntax for the definition of Ntcc processes. We provide a similar interface to write
Ntcc processes in Lisp. Furthermore, CCFOMI definitions are written in Ntccrt in an intuitive
way using OpenMusic.

For instance, the Synci process, in charge of the synchronization between the PLAY ERi and
the ADDi processes, is represented with a few boxes: one for parallel processes, one for the ≤
condition, one for the = condition, and one for when and unless processes (see figure 5.2)

Figure 5.2: Writing the Synci process in OpenMusic
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We successfully specified CCFOMI in OpenMusic and we ran it as an stand-alone program
using Midishare. We also ran it as a PD plugin generated by Ntccrt. The plugin is connected to
the midi-input, midi-output, and a clock ( used for changing from a time-unit to the other). For
simplicity, we generate a clock pulse for each note played by the user (fig. 5.3). In the same way,
we could connect a Metronome object. Metronome is an object that creates a clock pulse with a
fixed interval of time.

Figure 5.3: Running CCFOMI in Pure Data (PD)

5.3.3 Signal processing

Ntcc was used in the past as an audio processing framework [38]. In that work, Valencia and
Rueda showed how this modelling formalism gives a compact and precise definition of audio stream
systems. They argued that it is possible to model an audio system and prove temporal properties
using the temporal logic associated to ntcc. They proposed that a ntcc each time-unit can be
associated to processing the current sample of a sequential stream. Unfortunately in practice this is
not possible since it will require to execute 44000 time units per second to process a 44 Khz audio
stream. Additionally, it posses problems to find a constraint system appropriate for processing
signals.

Another approach to give formal semantics to audio processing is the visual audio processing
language Faust [26]. Faust semantics are based on an algebra of block diagrams. This gives a
formal and precise meaning to the operation programed there. Faust has also been been interfaced
with Pd [15].

Our approach is different, we use a Ntcc program as an external for Pd or Max to synchronize
the graphical objects in charge of audio, video or midi processing in Pd. For instance, the Ntcc
external decides when triggering a graphical object in charge of applying a delay filter to an audio
stream and it will not allow other graphical objects to apply a filter on that audio stream, until the
delay filter finishes its work.

To illustrate this idea, consider a system composed by a collection of n processes (graphical
objects applying filters) and m objects (midi, audio or video streams). When a process Pi is
working on an object mj , another process cannot work on mj until Pi is done. A process Pi is
activated when a condition over its input is true.

The system variables are: workj represents the identifier of the process working on the object
j. endj represents when the object j has finished its work. Values for endj are updated each time
unit with information from the environment. inputi represents the conditions necessary to launch
process i, based on information received from the environment. Finally, waitj represents the set
of processes waiting to work on the object j.

Objects are represented by the IdleObject(j) and BusyObject(j) definitions. An object is idle
until it non - deterministically chooses a process from the waitj variable. After that, it will remain
busy until the endj constraint can be deduced from the store.
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Formal definition

IdleObject(j)
def
=

when workj > 0 do next BusyObject(j)
‖ unless workj > 0 next IdleObject(j)
‖

∑
x∈P

when x ∈ waitj do tell workj = x

BusyObject(j)
def
=

when endj do IdleObject(j) ‖ unless endj next BusyObject(j)

A process i working on object j is represented by the following definitions. A process is idle
until it can deduce (based on information from the environment) that inputi.

IdleProcess(i, j)
def
=

when inputi do WaitProcess(i, j) ‖ unless inputi next IdleProcess(i, j)

A process is waiting when the information for launching it can be deduced from the store.
When it can control the object, it goes to the busy state.

WaitingProcess(i, j)
def
=

when workj = i do BussyProcess(i, j) ‖ unless workj = i next
WaitingProcess(i, j) ‖ tell i ∈ waitj

A process is busy until it can deduce (based on information from the environment) that the
process finished working on the object associated to it.

BusyProcess(i, j)
def
=

when endj do IdleProcess(i, j) ‖ unless endj next BusyProcess(i, j)

This systems models a situation with 2 objects and 4 processes. The implementation of this
external can be adapted to any kind of objects and processes, represented by graphical objects in
Pd. Ntcc only triggers the execution of each process workj = i, receives an input endj when the
process is done and another input inputi when the conditions to execute the process i are satisfied.

System()
def
=

IdleObject(1) ‖ IdleObject(2) ‖ IdleProcess(1, 1) ‖ IdleProcess(1, 2) ‖ IdleProcess(2, 1)
‖ IdleProcess(2, 2)

Implementation

This system is described in OpenMusic using the graphical boxes we provide. For this system, we
use the ntccinbansignal to represent the bang inputs to the external in pd or max. (see fig. 5.4).
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Figure 5.4: Writing a synchronization Ntccrt external in OpenMusic
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Chapter 6

Developing libraries to solve
musical CSP’s in Common Lisp

Gecode is a very efficient constraint solving library for C++. We are interested in developing an
interface for that library to Common Lisp. First, we extended the Gecol library to work with
current version of Gecode. Then, we realized that we needed a high-level API, because Gecol only
provide a low level API to call Gecode functions directly. For that reason, we decided to extend
the Gelisp library to work with current version of Gecode. Furthermore, we provided a graphical
interface to represent CSP’s’s using OpenMusic and Gelisp.

6.1 Our previous approach: Extending Gecol

GECOL is a wrapper for Gecode 1.3 versions maintained by Killian Sprotte, providing propagators
for finite domain (FD), finite domain sets (FS), the Deep-First-Search (DFS) and Branch-and-
Bound (BAB) search engines. Gecol 2, the library we have developed, is an extension of Gecol
maintained by Mauricio Toro Bermúdez, supporting Gecode 2.1.1 (current version of Gecode) and
including further support for FS constraints. Gecode 2 is a low level API wrapping the propagators
and the search engines mentioned before.

In order to write a finite domain CSP in Gecol 2, it is required to create a gecolspace (a class
inheriting from Gecode’s space), declaring the number of variables to be used and their the domain.
Then we add the constraints and specify the branching.

Gecode 2 vs Gecol 2

We wrote two benchmark examples provided by Gecode 2 in Gecol 2 , the n-queens and all-distinct
stress examples. The efficient version of n-queens, using all distinct constraints, was tested in
both libraries in an Intel 2.8 GHz using Mac OS 10.5.2, Gcc 4.1, Gecode 2.1.1 and Lispworks 5.02
professional . The reader can notice (fig. 6.1) that time consumption of Gecol 2 is only about
50% more when using Gecode 2. On the other hand the memory consumption, presented in figure
6.2, is the around twice compared with Gecode 2.
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Figure 6.1: Comparing Nqueens in GECODE and GECOL 2 (time in seconds)
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Figure 6.2: Comparing Nqueens in GECODE and GECOL 2 (memory in bytes)

Tests

We represented a Klumpenhouwer network (k-net) in Gecode and Gecol 2 as an adjacency matrix
(a common representation for graphs). Following this representation, we wrote a CSP to find all
the k-nets for a pitch class. First, we wrote a program in C++ using Gecode and then, in Common
Lisp using Gecol 2 and Lispworks CAPI library (for drawing graphs). Gecode 2 runs around 3
times faster Gecol 2 for solving this problem, when we print the solutions. On the other hand, if
we use Lisp lists to store all the solutions, time consumption and memory consumption gets very
high using Gecol 2.
Klumpenhouwer networks (k-nets)

Transformational theory is an extension of classic American music set theory, which offers a
formalized, mathematical approach to music analysis. The transformational approach, as it is
explained by Hascher ([18]), arises from a simple questioning: let a and b be two musical objects,
what do we need to do to a in order to obtain b? The notions of transformational theory belong
principally to group theory, as opposed to “mathematical” set theory on which “musical” set theory
is based.

A Klumpenhouwer network (k-net) is a connected, valued, and directed graph, whose vertices
are pitch classes, and whose edges are the operations of transposition tm and inversion in. To
explain the intuition of transposition and inversions: let a, b be two pitches or elements of the set
{C,C#, D, ...B}. A transposition a tm b mean that (a + m) mod 12 = b. On the other hand, an
inversion ainb means that b can be obtained from a “reflecting” a according to the nth symmetry
line in a pitch circle (see figure ??). For instance, we can find different k-nets for the Pitch class
{B,F#, A} as we can see in figure 6.3.
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Figure 6.3: Some K-nets for {B,F#, A}

Formal definition

Formally, a CSP is a tuple < X,D,C > where X is the set of variables, D is a domain of values
and C is the set of constraints. The input of this problem is a class pitch I represented as a tuple
< i1, i2, ...in > and K the desired inversions. The variables for the CSP are X = < x1, x2, ...xn2 >,
their domains are D = {0, 1, 2}. For the domain we represent when there is not an edge as 0,
transpositions as 1 and inversions as 2.
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For the constraints, we consider that if there is a transposition or inversion from i to j there
is also one from j to i, that way we can represent multiple solutions in a single adjacency matrix.
The constraints C are the following relations over all the variables in X:

• the number of variables distinct from 0 are greater or equal than 2 ∗ n

• the number of variables equal to 2 are 2 ∗K

• for each i ∈ [0..n], j ∈ [0..n] if i = j then xi∗n+j = 0

• for each i ∈ [1..n], j ∈ [1..n] if i <> j then xi∗n+j = xj∗n+i.

The “for each” constraints can be easily represented in Gecol 2 as follows

(dotimes (i n) (dotimes (j n)

(if (equal i j)

(gecol:rel... s (gecol:gecolspace-getint-int s (+ (* i n) j)) :irt-= 0 :icl-def)

(gecol:rel... s (gecol:gecolspace-getint-int s (+ (* i n) j))

:irt-= (gecol:gecolspace-getint-int s (+ i (* j n))) :icl-def))))

6.2 Our solution: Extending Gelisp

Gelisp provides an interface for Common Lisp and a graphical interface for OM. The syntax and
the way how constraints are posted is greatly simplified (compared to Gecode) by using lists. The
arrays of variables in Gecode are represented as lists in Lisp, allowing the user to apply list functions
to them.

6.2.1 Interface for Common Lisp

To solve a problem using this interface, we need to write a script. A script is a function to: construct
a Computational Space (CS), define problem variables belonging to the CS and determine their
domains, post constraints on the variables, and setup a search strategy. A CS comprises a store
containing asserted constraints and a set of propagators interacting with it

This interface allows the user to call most of Gecode propagators for both, Finite Domain
(FD) and Finite Set (FS) constraint systems. We provide general constraints that are compiled to
different Gecode methods according to the parameters given. For instance, (<g (+g X Y Z) W)
and > (>g (+g X Y Z) 2) are compiled to different methods.

Constraints for Finite Domain (FD)

We provide FD propagators for: defining domains (e.g., Domain(X) = [2, 5]), arithmetic expres-
sions (e.g., X + Y +Z), equalities and inequalities (e.g., X + Y < Z), sortedness and distinctness,
minimum and maximum, cardinality (e.g., 1 occurs 2 times in [XY Z]), boolean constraints, and
regular expression constraints.

Constraints for Finite Set (FS)

On the other hand, for FS we provide constraints for: defining domains (e.g., V ⊆ {1, 2, 3}), set
expressions (e.g., A ∪ B = C), set relations (e.g., X ⊂ V ), set distinctness, and linking FD with
FS variables.

Performing search

In addition, Gelisp includes two search engines, Deep Search First (DSF) and Branch-and-bound
(BAB). The DFS engine works by choosing some variable, then a value for that variable, if this
does not succeed (a constraint does not hold) then chooses another value. If the value succeed,
then chooses another variable, then a value for it, etc.

The BAB engine works in a similar way but solutions are computed in such a way that each
subsequent solution increases the value of some user specified FD variable. Both engines can be
used for both FS and FD. In addition, we can parametrize heuristics for value and variable order.
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Performing propagation

Furthermore, it is possible to execute propagation and observe the domain of the variables after
propagation. This is useful, for instance, to post temporal relations over musical objects and
observe the possible positions in time for each object[2].

Limitations

We do not provide constraints for the complete set representation, an efficient representation for
sets; the reflection API, used to get detailed information of the search and propagation; nor to
handle Gecode exceptions. We plan to have those features in next version.

6.2.2 Graphical Interface for OpenMusic

Instead of writing a script, in the graphical interface we represent a program with a special patch. A
patch is a visual algorithm, in which boxes represent functional calls, and connections are functional
compositions. Inside this CSP patch, we can place special boxes: to connect each constraint in the
CSP, to define variable and value heuristics, to define a time limit in the search, to connect the list
of variables that we want to observe, and a box to connect the variable to be optimized during the
search.

Representing constraints with graphical boxes

Furthermore, we provide a variety of boxes to represent simple constraints (e.g., a = b and a < 2)
and high-level constraints (e.g., “all the intervals from a sequence must be different”). The output
of a CSP patch can be connected to three different kind of boxes: to find one solution, to find all
the solutions, and to perform propagation without search.

Novelties of the graphical interface

Using the graphical interface we can express problems declaratively with high-level constraints, but
unfortunately, some problems cannot be represented with the high-level constraints and require a
modeling using simple constraints and loops.

The high-level constraints can be parametrized. For instance, the graphical box to find the
intervals of a list (x → dx) can be parametrized to find absolute, non-absolute, or modulo n
intervals. Additionally, it is possible to setup a parameter to post an all-distinct (i.e., the elements
of the list are pairwise different) constraint over the intervals.

6.3 Applications

Following, we describe both, an intuitive and formal definition of two CSP’s and we explain how
we solved them with Gelisp. Formally, a CSP is triple < X,D,C >, where X is a set of variables,
D are the domain values for each variable, and C is a set of constraints (read as conjunction) over
the variables.

6.3.1 All-interval series

This problem can be generalized to find n different notes with n different inversional equivalent
intervals1 (including Vn− V0). For instance, a value of n = 24 represents the all-interval series for
microtones.

1For instance, an interval C-E is equivalent to E-C.
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Formal definition

We formally define this CSP for an input n, as n different variables with domain [1..n], where all
modulo n intervals are pairwise different.
Variables: V1 ... Vn
Domains: [1..n] ... [1..n]
Constraints:

• C1 alldiff(V )

• C2 alldiff((Vi+1 − Vi)%n), i ≤ n)

We do not need to post a constraint for the interval (Vn−V0) because that interval is always 6,
according to the literature. Furthermore, we know that it is enough to calculate the series where
V0 = 0, because the other ones can be obtained from that one. In addition, we know that if V1..Vn
is an all-interval serie, Vn...V1 is also. For that reason we model this two constraints to avoid
symmetrical solutions:

• C3 V0 = 0

• C4 V0 < Vn

Graphical representation

We represent graphically this CSP with: a box to create the pairwise different variables, an x→ dx
for C2 box, an equality for C3, and inequality box for C4.

Related work

Since the problem is about finding inversional equivalent intervals, previous attempts to solve this
problem used an absolute value constraint to model C2. That approach is not very efficient, because
the absolute value cannot be expressed as a linear constraint, however the modulo n constraint can.

6.3.2 Michael Jarrell’s CSP

Compositor Michael Jarrel proposed a CSP for automatic music generation [19]. The goal is to
generate n notes. The notes have two type of segmentation, for the chords and for the motives.
Each note belongs to a chord (depending on which segment the note is).

In addition, there are some motives and their desired amount for the intervals of each motives
segment. Moreover, the first and the last note of the sequence are fixed. Finally, it is possible to
have absolute or non-absolute intervals for the motives and allowing octaviation2 for the chords,
the limits, or the motives.

Formal definition

Following, we define formally the CSP for the case of non-absolute intervals. For simplicity (in the
formal description), we do not include octaviation nor segmentation.
Inputs:

• Motives [M1...MA]

• Occurrences [OM1...OMA]

• Chord C

• Limits L1, L2

Variables: V1 ... Vn
Domains: [0..127] ... [0..127]
Constraints:

2For instance, using octaviation, a pitch 62 (in Midi format) is equivalent to 50, 74, 86, etc.
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• C1 ∀1<i<A |{Mi,Mi is a subsequence of {Vi+1 − Vi, i < n}}| = OMi

• C2 ∀1<i<n Dom(Vi) = C

• C3 V1 = L1 ∧ Vn = L2

Graphical representation

The graphical representation is composed by a few graphical boxes, without representing loops
explicitly. In figure 6.4, we present the constraint C1. Note how we use map iterators, the x→dx,
and motives-occurs= boxes to find the intervals of each motives segment and to say how many
occurrences of the motives are, respectively.

Figure 6.4: Constraint C1 of Jarrell’s CSP

Related work

A previous attempt to solve this problem used OmBacktrack. Unfortunately, that library is no
longer available in current version of OM.
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Chapter 7

Concluding Remarks

We conclude this report by summarizing some concluding remarks from the previous chapters and
presenting future research.

7.1 Results

“John McLaughlin, said to be one of the fastest Jazz guitarists, and found a minimum inter onset
time of about 60 milliseconds. This figure gives an approximate constraint for the computation
time of our system: it should be able to learn and produce sequences in less than 30 milliseconds.”
According to the authors of the Continuator, a well-known machine improvisation software [28].

We ran CCFOMI in Ntccrt over an Intel 2.8 GHz using Mac OS 10.5.2 and GCC 4.1, taking
an average of 20 milliseconds per time-unit, scheduling around 880 processes per time-unit, and
simulating 300 time-units. Since we are learning and producing sequences with an answer time
less than 30 milliseconds then, according to the authors of the Continuator, we have a system fast
enough to interact with a musician.

7.2 Summary

• Using continuations in Lispworks is not very efficient because they do not work close to
the compiler. An efficient implementation of lighweight threads in Common Lisp depends
on the applications using the threads. For instance, for a CCP interpreter using Gecode,
event-driven programming seems very natural, but for the Omax system, it could not be
appropriate.

• On the other hand, a novelty of Ntccrt is the simplicity to represent concurrency and the
iconic language designed to write the specifications, allowing non-computer scientists to easily
model their systems. This interpreter can also represent processes that are not available in
the formalism. Ntccrt offers two features not found in the Ntcc formalism. First, it is able to
express general recursion (e.g., it can make multiple recursive calls in a recursive procedure),
while the NTCC formalism offers a restricted kind of recursion. Second, since we encoded
the When processes as a Gecode propagators, we are able to use search in Ntcc models
without using the

∑
agent. Models using non-deterministic choices are incompatible with

the recomputation used in the search engines. This is not possible when encoding the when
processes as threads.

• Unfortunately, the interpreter is not able to execute processes leading the Store to false. For
instance,

when false do next tell (fail = true)
‖tell (a = 2)‖tell (a = 3)
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Since the when agent is represented as a propagator, once the propagation achieves a fail
state no more propagators will be called in that time-unit, causing inconsistencies in the
rest of the simulation. Fortunately, processes reasoning about a false Store can be rewritten
in a different way, avoiding this kind of situations. For instance, the process above can be
rewritten as

when state = false do next tell (fail = true)
‖tell (state = false)

• Although Gecode was design for solving combinatory problems using constraints, we found
out that using Gecode for Ntccrt gives us outstanding results for real-time. On the other
hand, it is very expressive since most of the propagators used in real-time have a reified
version, and those who does not have one, are easily extensible.

• Finally, we extended most Gelisp to work with OpenMusic. Our extensions provides an
interface for most Gecode propagators and search engines. Furthermore, we provided some
graphical boxes to represent constraints and search heuristics. Using Gelisp we can specify
programs graphically and solve them almost as fast as using Gecode directly.

7.3 Future Directions

7.3.1 Using a high-performance implementation of Common Lisp

In the future, in order to use lightweight threads in Common Lisp, we recommend exploring an
implementation with lightweight threads such as CMU-CL (http://www.cons.org/cmucl/). Note
that current version of CMU-CL (CMU-CL 19e) provides binaries for Mac OS X.

7.3.2 Applications for the CCP interpreter

We used the interpreter concurrently. It can be easily extended to find multiple paths in a bounded
time, rank them according to a weight function, and returning the path with the highest rank. Since
we represented the ask process as a monotonic propagator, we can use the Branch-and-Bound
(BAB) search engine provided by Gecode, and the time objects (e.g., TimeStop) to manage the
time demands. In the future, we propose using the CCP interpreter to find musical sequences in
the Factor Oracle. This can be used in a music improvisation system such as Omax.

7.3.3 Using Gelisp for Ntccrt

A problem arises when we want to call Lisp functions from the interpreter. Currently, we are only
using Lisp to generate C++ code. However, it is not possible to embed Lisp code in the interpreter
(e.g., calling a Lisp function as the continuation of a when process). To fix that inconvenient,
we propose using Gelisp for writing a new interpreter, taking advantage of the call-back functions
provided by the Foreign Function Interface (FFI) to call Lisp functions from C++. That way a
process can trigger the execution of a lisp function.

7.3.4 Adding support for cells for Ntccrt

The implementation of cells is still experimental and it is not yet usable. The idea for a real-time
capable implementation of cells is extending the implementation of persistent assignation. Cells, in
the same way than persistent assignation, require to pass the domain of a variable from the current
time-unit to a future time-unit. However, persistent assignation usually involves simple equality
relations. On the other hand, the cells assignation may involve any mathematical function g(x)
(e.g., g(x) = x2 − 2).
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7.3.5 Developing an interpreter for pntcc

There is an extension to make probabilistic choice in ntcc. The Probabilistic Non-deterministic
Timed Concurrent Constraint (pntcc [29]) extends the non-deterministic choice with a probabilistic
distribution. Probabilistic choice in pntcc is represented with the

⊕
operator.

Probabilistic choice is not yet possible in Ntccrt. For achieving it, we propose extending the
idea used for non-deterministic choice agent

∑
. To model

∑
, it was enough to determine the first

condition that can be deduced and then activate the process associated to it. For probabilistic
choice, we need to check the conditions after calculating a fixpoint, because we need to know all the
conditions that can be entailed before calculating the probabilistic distribution. When multiple
probabilistic choice

⊕
operators are nested, we need to calculate a fixpoint for each nested level.

7.3.6 Developing an interpreter for rtcc

Finally, we found out that the time-units in Ntccrt do not represent discrete time-units, because
in the simulation they have different durations. This is a problem when synchronizing an ntcc
program with other programs. To fix it, we made the duration of each time-unit take a fixed time.
We use a clock provided by Pd or Max and providing a clock input in Ntccrt plugins.

Unfortunately, there is not way a to describe the behavior of a ntcc time-unit if the fixed time
is less than the time required to execute all the processes scheduled. For that reason we propose
developing an interpreter for the Real Time Concurrent Constraint (rtcc) [42] calculus. This
calculus is an extension of ntcc capable of strong time-outs. Strong time-outs allows the execution
of a process to be interrupted in the exact instant in which internal transitions cause a constraint
to be inferred from the store. Rtcc is also capable of delays inside a single time unit. Delays inside
a single time unit allows to express things like “this process must start 3 seconds after another
starts”.

7.3.7 Adding other graphical interfaces for Ntccrt

For this work, we conducted all the tests under Mac OS X using Pd. Since we are using Gecode
and Flext to generate the externals, they could be easily compiled to other platforms and for Max.
We used Openmusic to define an iconic representation of ntcc specifications. In the future, we
also propose exploring a way of making graphical specifications for ntcc similar to the graphical
representation of data structures in Pd.

7.3.8 Developing model checking tools for Ntccrt

We propose using model checking tools for verifying properties complex systems. As far as we
know, the only way to verify automatically ntcc and pntcc specifications is by running them on
interpreters. For instance, we propose exploring the automatic generation of models for probabilis-
tic model checker such as Prism. The reader should be aware that Prism has been used successfully
to check properties of real-time systems [22].

7.3.9 Extending Rules2Cp for musical CSP’s in Gelisp

In addition, the idea of representing CSP’s and their heuristics with business rules from Rules2Cp[12]
could be extended for music. The goal is writing rules, graphically, defining a musical CSP’s and
simplifying the task of choosing heuristics manually.

7.3.10 Adding more features to search in Gelisp

We also want to represent recomputation (a parameter for search engines in Gecode) graphically
and include in Gelisp other methods to stop search (besides time limit), such as memory limit and
failures limit, provided by Gecode.
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