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K. Trabelsi†,∗, T. Hélie‡,∗, D. Matignon†,∗
†GET Télécom Paris, TSI dept. & CNRS UMR 5141. 37-39 rue Dareau, 75014 Paris, France

‡Ircam, Centre Pompidou, Analysis/Synthesis team & CNRS UMR 9912. 1 placeStravinsky, 75004 Paris, France.
∗Email: karim.trabelsi@enst.fr, thomas.helie@ircam.fr, denis.matignon@enst.fr

∗ Work supported by the CONSONNES project, ANR-05-BLAN-0097-01.

Abstract
Two methods are investigated for the time-domain si-

mulation of functions and dynamical systems of Bessel
type, involved in wave propagation (seee.g. [1], [8], [2]).
Both are based on complex analysis and lead to finite-
dimensional approximations. The first method relies on
optimized parametric contours and provides asymptotic
convergence rates. The second is based on cuts and in-
tegral representations, whose approximations prove effi-
cient, even at low orders, using ad hoc frequency criteria.

1 Model under study
For ℜe(s) > −ε, let Ĵε(s) = [(s + ε)2 + 1]−1/2 be

the Laplace transform ofJε(t) = e−εt J0(t) for t ≥ 0
(cf. [3]). The general formula can be derived:

Jε(t) =
1

2ι̇π

∫

R

eγ(u) tĴε
ε
(γ(u)) γ′(u) du, (1)

where theC1 parametrizationu 7→ γ(u) defines a curveC
which encloses all the singularities of̂Jε: poles, branch-
ing points and cuts. In the caseγ(u) = σ + 2ι̇πu for
σ>0, we recover the standard Bromwich formula.

2 Optimized parametrized Bromwich contours
In this section, we approximateJε(t) on an interval

[t0, t1] following Talbot’s approach, [11]. More precisely,
we use two parametrized Bromwich contours proposed
in [12], either the parabolaγ(u) = µ(ι̇u + 1)2 + β, or
the hyperbolaγ(u) = µ(1 + sin(ι̇u − α)) + β where
u ∈] − ∞,∞[, µ > 0 regulates the width of the con-
tours,β determines their foci, andα defines the hyper-
bola’s asymptotic angle. The motivation for these choices
is their simplicity and suitability for a trapezoidal ap-
proximation of (1) by:

Jε
h,N (t) =

h

2ι̇π

N∑

n=−N

eγ(nh)tĴε(γ(nh)) γ′(nh). (2)

Indeed, one can assess the discretization errors by classi-
cal techniques (see [7], [10,§ 3.2]) to obtain, for allt ≥ 0,

|Jε(t)−Jε
h,∞(t)|≤E−

d (t)+E+
d (t) with E±

d =
M±(t)

e2πc±/h− 1
,
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Figure 1: Parametrized Bromwich contours. (a) left:
parabolas; (b) right: hyperbola.

owing to the holomorphic extension of the integrand in
(1) to U ={u∈C : −c−<ℑ(u)<c+} (see [12, Th. 2.1]).
For a given (t0, t1, N), the parametersµ, h and a
range ]α−, α+[ for α are derived in [12,§ 3, 4] by
asymptotically balancing the discretization errorsE±

d ,
and the truncation errorEt which is assumed to be-
have like the magnitude of the last term in (2), that
is, O(|heγ(Nh)tĴε(γ(Nh))γ′(Nh)|). Parameterβ is as-
sumed to have a small real part.

2.1 An optimized parabolic contour
One way to simulate the Bessel functionJε is to con-

sider it as theconvolution of the two functionsjε
±(t) =

L−1[1/
√

s + ε ∓ ι̇] = (πt)−1/2e(±ι̇−ε)t. The function
jε
+ can be represented using a parabolic contour adapted

to the cutι̇ − ε + R
− (jε

− is straightforwardly inferred
by hermitian symmetry, see Fig. 1a). However, two prob-
lems arise: first, the theoreticalL∞-error (see [12,§4])

EN , sup
t∈[t0,t1]

|jε
±(t)−jε

±,h,N | = O(e−2πN/
√

8Λ+1), (3)

whereΛ = t1/t0, is not matched numerically. Neverthe-
less, this relation is recovered by takingt′0 = 4 t0, as ob-
served in Fig. 2 (a possible reason could be the singularity



of jε
± at t = 0+). Second, numerical convolution fails for
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Figure 2: Approximation ofj0
± for (t0, t1) = (1, 50).

Theoretical (-) and numerical (.,*) errors.

lack of information on the interval[0, t0[ and badly ap-
proximated values on[t0, t′0]. Using hyperbolic contours
for Jε will help cope with both these problems, due to the
decomposition intosingular functionsjε

±.

2.2 An optimized hyperbolic contour
Here, we adopt the hyperbolic contour Fig. 1b, which

is appropriate for our model problem, since the singula-
rities lie in a sectorial region. In this case, the optimal
convergence rate is:

EN = O(e−B(α,Λ)N ), α ∈]π/4 − δ/2, π/2 − δ[, (4)

where δ defines the sector the singularities lie in (see
Fig. 1b) andB behaves like(1/ ln Λ) for largeΛ (see [12,
§ 4]). Further numerical simulations show that optimizing
B w.r.t. α divides the rate by10 at most, compared to the
choice:α = π/4 − δ/2 + 0.
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Figure 3: Approximation ofJ0(t) for t ∈ [1, 5], and of
J1(t) for t ∈ [0.1, 50]. Theoretical and numerical errors.

Figure 3 shows that the greaterε, the better the ap-
proximation: asε gets smaller, the asymptotic sector

widens; therefore, to yield comparable convergence rates
in (4), one needs to takeΛε=1 = 100 Λε=0. Forε = 1, β
is zero, while forε = 0, β has to be tuned heuristically,
with a small real part (here,β = 0.25).

Improvements brought by hyperbolic over parabolic
contours are yet unsufficient: a lingering problem is due
to the nodes with apositive real part, which prevent simu-
lation for t ≥ t1 (exponential divergence). This is tackled
by the exact and approximated integral representations.

3 Optimal integral representations
The transfer function̂Jε(s) is analytic in the Laplace

domainℜe(s)>−ε. In this section, we consider analytic
continuationŝJε

θ of Ĵε overC \ (Cθ ∪ Cθ), with the cuts

Cθ =
(
ι̇ − ε + eι̇θ

R
+
)

andCθ, andĴε
θ defined by:

Ĵε
θ (s) =

1
(θ)
√

s + ε − ι̇ (2π−θ)
√

s + ε + ι̇
, (5)

(θ)
√

ρ eι̇φ =
√

ρ eι̇φ/2, if ρ ≥ 0, φ ∈]θ − 2π, θ[.

3.1 Principle
Foru ≥ 0, letγu = ι̇−ε+eι̇θu be a parametrization of

Cθ. FunctionĴε
θ (s) has hermitian symmetric decomposi-

tion
(
Ĵε+

θ (s) + Ĵε+

θ (s)
)
/2, with integral representation:

Ĵε+

θ (s) =

∫

Cθ

µθ(γ)

s − γ
dγ =

∫

R+

µθ(γ(u))

s − γ(u)
γ′(u) du,

µθ

(
γu

)
= lim

η→0+

Hθ

(
γu + ι̇γ′

uη
)
− Hθ

(
γu − ι̇γ′

uη
)

2ι̇π

=
[
π
√

u
(θ)
√

2ι̇ + eι̇θu
]−1

eι̇ π−θ

2 (6)

which fulfills the well-posedness criterion (see e.g. [6]):

∫

Cθ

∣∣∣∣
µ(γ) dγ

1 − γ

∣∣∣∣ ,

∫

R+

∣∣∣∣
µ(γu)

1 − γu
γ′

u

∣∣∣∣ du < ∞.

These systems are approximated by the finite-
dimensional models:

H̃µ(s) =
1

2

K∑

k=0

[
µk

s − γk
+

µk

s − γk

]
, (7)

whereγk are a finite set of poles located on the cutCθ. For
a given location (so far, only aheuristic approach based
on Bode diagrams is being used), the weightsµk are op-
timized for the weighted least-squares criterion:

C(µ) ,

∫

R+

∣∣∣H̃µ(2ι̇πf) −Ĵε(2ι̇πf)
∣∣∣
2
w(f) df, (8)



with the weightw(f) = 1[f−,f+](f)/(f |Ĵε(2ι̇πf)|2).
The latter takes into account a bounded frequency range, a
logarithmic frequency scale, and a relative error measure-
ment (see [6] for details). Note that the Laplace trans-
form of (2) is of the form (7) withγk = γ(kh) and
µk = 2h γ′(kh) Ĵε

(
γ(kh)

)
for 0 ≤ k ≤ K =N .

3.2 Numerical results
We consider four cases:(C1) J0 with θ = π, (C2) J1

with θ = π, (C3)J0 with θ = π
2 , (C4)J1 with θ = α+ π

2 .
Results are presented on Fig. 4 for poles (1 ≤ K ≤ 8) on
Cθ with log-spacedu from umin = 5.10−4 to umax =
5.103.
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Figure 4: Approximations ofJ0 andJ1 for various cuts
(θ ≈ π

2 andθ = π). Numerical errors.

Comparisons are also displayed in Fig. 3 for(C3) and
(C4). Note that horizontal cuts (i.e.θ = π) improve the
approximations significantly.

Conclusion and Perspectives
The first method seems appealing because of the a pri-

ori convergence rate, but this is only asymptotic. Other
drawbacks are: sensitivity of the parameters of the con-
tours, and existence of unstable nodes preventing long-
range time simulation. On the contrary, the second
method gives stable approximate systems, and the crite-
rion used to build them is very flexible, user-designed;
still, no theoretical convergence rate seems to be avai-
lable, but low-order results can be very good.

Both these methods need to be tested on a wider family
of transfer functions (see [3, chap. 4]). The role of the
parameters in the first method has to be investigated more
thoroughly and systematically. Another direction of re-
search to be pursued in the near future is to compare our
results with other techniques, based on Gauss-Legendre
quadature points in the evaluation of the integral repre-
sentation, which also have some very useful a priori error

estimates, see e.g. [4].
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