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Abstract (a) Parabola (b) Hyperbola
Two methods are investigated for the time-domain si- * ‘ st S
mulation of functions and dynamical systems of Bessel AR = nodes in Re(2)>0
type, involved in wave propagation (seg. [1], [8], [2]). . smounty
Both are based on complex analysis and lead to finite- -~ \ *
dimensional approximations. The first method relies on ‘ e+ .
optimized parametric contours and provides asymptotic
convergence rates. The second is based on cuts and in-E
tegral representations, whose approximations prove effi- r
cient, even at low orders, using ad hoc frequency criteria. ‘
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1 Model under study N i ‘
For Re(s) > —e, let Jo(s) = [(s +¢)2 + 1]"Y/2 be
the Laplace transform of(t) = e ' Jy(¢) for ¢ > 0 e ‘
(cf. [3]). The general formula can be derived: Res Res
N () £ , Figure 1: Parametrized Bromwich contours. (a) left:
) =5 Re Je (v(w) v (w)du, (1) parabolas; (b) right: hyperbola.

where theC! parametrization, — ~(u) defines a curvé
which encloses all the singularities &t poles, branch-
ing points and cuts. In the caséu) = o + 2iwu for
o >0, we recover the standard Bromwich formula.

owing to the holomorphic extension of the integrand in
D) toUU={ueC: —c <J(u)<c'} (see [12, Th.2.1]).
For a given (to,t1,N), the parameterg;,, h and a
range Ja~,at[ for « are derived in [12,§3,4] by
asymptotically balancing the discretization errdigt,
and the truncation errof; which is assumed to be-
have like the magnitude of the last term in (2), that
is, O(|he? (Nt J(n(NR))~y'(Nh)|). Parametep is as-
sumed to have a small real part.

2 Optimized parametrized Bromwich contours

In this section, we approximaté®(¢) on an interval
[to, t1] following Talbot’s approach, [11]. More precisely,
we use two parametrized Bromwich contours proposed
in [12], either the parabola(u) = u(iu + 1)% + 3, or
the hyperbolay(u) = p(1 + sin(iv — @)) + 3 where 21 An optimized parabolic contour
u €] — 00,00, u > 0 regulates the width of the con- One way to simulate the Bessel functidfiis to con-
tours, 3 determines their foci, and defines the hyper-  gjqer it as theconvolution of the two functionsjs. (¢) =
bola’s asymptotic angle. The motivation for these choices LY1/VsteFi] = (mt)~V/2e* =)t The function
is their simplicity and suitability for a trapezoidal ap- j5 can be represented using a parabolic contour adaptec
proximation of (1) by: to the cuti — ¢ + R~ (j° is straightforwardly inferred

o by hermitian symmetry, see Fig. 1a). However, two prob-
Tin(t) = o~ "M TE(y(nh)) A (nh).  (2) lems arise: first, the theoreticAP-error (see [12§4])
’ LT
T En 2 sup |j5(t)-j5 ] = O VVET) (3)
Indeed, one can assess the discretization errors by classi- t€fto,t1]

cal techniques (see [7], [193.2]) to obtain, for alk > 0, whereA = t; /tg, is not matched numerically. Neverthe-

E . - N _ N M*(t) less, this relation is recovered by takitjg= 4 t,, as ob-
T2 ()= Th oo (D) < By ()+E (1) with Ej = 57223~ served in Fig. 2 (a possible reason could be the singularity



of j& att = 0™). Second, numerical convolution fails for
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Figure 2:  Approximation of for (tg,t1) = (1,50).
Theoretical (-) and numerical (.,*) errors.

lack of information on the interveD, ¢o[ and badly ap-
proximated values ofty, t(,]. Using hyperbolic contours
for J¢ will help cope with both these problems, due to the
decomposition int@ingular functions;s. .

2.2 An optimized hyperbolic contour

Here, we adopt the hyperbolic contour Fig. 1b, which
is appropriate for our model problem, since the singula-
rities lie in asectorial region. In this case, the optimal
convergence rate is:

Ex = O(eB@MNY o eln/a—6/2,7/2 - 6], (4)

where § defines the sector the singularities lie in (see
Fig. 1b) andB behaves liké1/In A) for largeA (see [12,

§ 4]). Further numerical simulations show that optimizing
B w.r.t. o divides the rate by0 at most, compared to the
choice:a = 7w/4 —§/2 + 0.
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Figure 3: Approximation of/y(¢) for t € [1, 5], and of
JY(t) for t € [0.1,50]. Theoretical and numerical errors.

Figure 3 shows that the greater the better the ap-
proximation: asec gets smaller, the asymptotic sector

widens; therefore, to yield comparable convergence rates
in (4), one needs to tak&=! = 100 A*=°. Fore = 1, 3

is zero, while fore = 0, 8 has to be tuned heuristically,
with a small real part (hergd = 0.25).

Improvements brought by hyperbolic over parabolic
contours are yet unsufficient: a lingering problem is due
to the nodes with @ositive real part, which prevent simu-
lation fort > t; (exponential divergence). This is tackled
by the exact and approximated integral representations.

3 Optimal integral representations

The transfer functiorﬁ(s) is analytic in the Laplace
domainfe(s) > —e. In this section, we consider analytic
continuationsf]@E of J¢ overC \ (Cg U Cy), with the cuts
Cop = (i — e + €R*) andCy, andJ; defined by:

— 1

i) = e o rerr O
“Wpee = Jp€?? ifp>0,peld—2m, 0]
3.1 Principle

Foru > 0, lety, = i —c+€’u be a parametrization of
Cy. FunctionJ;(s) has hermitian symmetric decomposi-

tion (J5" (s) + J5" (3))/2, with integral representation:

T (s) — / po(7) dVZ/ Me(W(U))V/ ) du,
i (s) o 5= v+ 5 — (1) ()
. Hy u+£’71/L _HQ,Y’LL_L.{L
po(vu) = lim b ) : ( 1)
77—>0+ 2L7T

[rvu X2+ efu] & (6)

which fulfills the well-posedness criterion (see e.qg. [6]):

Jo =5 L

These systems are approximated by the finite-
dimensional models:

[ 14k

S =k

K
-3
k=0
wherey;, are a finite set of poles located on the €yt For
a given location (so far, only beuristic approach based
on Bode diagrams is being used), the weightsare op-
timized for the weighted least-squares criterion:
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with the weightw(f) = 1[f7’f+](f)/(f|jz(2i7rf)\2). estimates, see e.g. [4].
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