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ABSTRACT
In this work we present an approach for detecting quasi periodic frequency modulations (vibrato) in mono-
phonic instrument recordings. Since a frequency modulation in physical instruments usually causes an ampli-
tude modulation, our method is based on a block wise cross correlation between the extracted frequency- and
amplitude modulation trajectories. These trajectories are obtained by removing the constant components.
The resulting cross correlation curve shows significant positive peaks at vibrato regions and local minima at
note boundaries. Our approach has the advantage of working without a previous note boundary detection
and needs only a small look ahead. Furthermore no presumptions on vibrato parameters have to be made.

1. INTRODUCTION

Modulations are an essential part of musical perfor-
mances. Musicians use them to create an individual
and vivid interpretation and to achieve a richer tim-
bre. In singing for example, such modulations are
often used subconsciously yet usually synchronized
to the musical content [1]. In solo instrument record-
ings we find, depending on the instrument and its

excitation principle, different kinds of modulations.
The terms regarding the modulations are not com-
monly used in literature. Some refer to vibrato as
modulations in general including modulations of fre-
quency, amplitude and spectral envelope. In this pa-
per we differentiate between frequency modulations
(FM ), called vibrato, amplitude modulations (AM ),
called tremolo and the spectral envelope modula-
tions (SEM ). In physical instruments these three
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types usually appear together and related to each
other. We will in this work focus on the relations
between vibrato and tremolo. Vibrato is known to
cause amplitude modulations by sweeping the exci-
tation signal through the instruments resonances [2].
A way of describing this phenomenon is the use of
the sinusoidal model. In [3], [4] and [5] the relations
of instantaneous amplitude and instantaneous fre-
quency have been investigated for the single partials
inside a sinusoidal model. Here it is pointed out
that in case of vibrato each partial varies its am-
plitude according to the section of the instruments
frequency response it is located at. This leads to a
modulation, depending on the slope of the relevant
section. Thus each sinusoid has an individual change
in amplitude induced by the vibrato what then leads
to the overall amplitude modulation by summing up
all partials modulations.
Vibrato is naturally used in all instruments which
allow this kind of modulation. The singing voice,
string, brass and wind instruments are regarded as
being of interest in vibrato research in [6]. Synthesiz-
ers and guitars are also capable of playing a vibrato.
Instruments like the piano and other percussion in-
struments do not allow frequency modulation tech-
niques.
The analysis of vibrato in musical performances is of
interest for multiple purposes. In signal transforma-
tions like pitch shifting or time stretching vibrato
parameters have to be known [7], [8]. Vibrato in-
formation can also be used to evaluate the skill of
musical performers like in [9] and [10]. Since vi-
brato features strongly depend on the instrument
they can be used as an additional feature for instru-
ment recognition, too. In [11] vibrato and tremolo
features of single partials have been used to detect
singing voice components.
The problem of extracting vibrato from monophonic
instrument recordings has been addressed in [12],
where several methods have been proposed. One
general approach for vibrato extraction is to look for
note boundaries first and then to analyze the parts
in between. Hence, a significant lookahead is neces-
sary. This makes a real time application impossible.
In this work we propose an algorithm for vibrato
detection, based on the block wise cross correlation
coefficient between the FM - and the AM trajectory.
In combination with the proposed method for the
frequency modulation trajectory extraction, a note

boundary detection is not needed.

2. ALGORITHM DESCRIPTION

2.1. Modulation Trajectory Extraction

The first step in the presented vibrato detection
is the extraction of the FM- and AM trajectories.
The fundamental frequency trajectory and the short
term energy trajectory of the whole signal have to
be freed from their steady state component, leaving
only the modulating components. Since the moti-
vation of this project is also a possible integration
into the phase vocoder, the f0 analysis parameters
are chosen to be applicable in that technology. A
window size of 25 ms and a hop size of 10 ms are
used. The calculation of the fundamental frequency
trajectory is performed in SuperVP, yet it could be
obtained with any other f0 calculation method like
YIN or SWIPE.

For our purposes the fundamental frequency trajec-
tory f0 will be regarded as a composition of three
parts

f0 = fstep + fcor + fmod (1)

with the leading component fstep, which contains
the discrete value note information, the slow varying
correction component fcor which features glissandi
and correction movements and finally the quasi pe-
riodic modulating components fmod.
Extracting fmod from the other components is a
bandpass filtering problem. The high frequency
parts of the note transitions and the low frequency
parts of the notes mean values have to be eliminated
to isolate the modulation trajectory which ranges
from about 4 to 12 Hz, with a preferred frequency
of 6 Hz. Applying normal bandpass filters with the
chosen hop size for f0 calculation causes errors, since
the note transitions in performances lead to leaps in
the fundamental frequency trajectory what causes
overshoots when filtering with IIR filters.
As mentioned previously, most algorithms for vi-
brato detection and extraction of vibrato parame-
ters regard single notes only or work with a prior
note boundary detection. Approaches of separat-
ing the modulation trajectory from the fundamental
frequency trajectory like this have been described in
[7], [13] and more recently in [8]. In that case the
mean value is extracted within each note to obtain
fstep. The instantaneous vibrato amplitude can then
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Fig. 1: Flow chart of the SOM - f0 decomposition algorithm

be calculated as the deviation from the center (note)
frequency. In our approach we extract the modulat-
ing trajectory without this prior analysis to increase
the real time capability.

In the presented method a non linear bandpass
filter which can be described as a derivative limiter
is used. A block diagram of the principle entitled
Slope Overload Memory (SOM) Filter is shown in
Figure 1. Whenever the absolute relative derivative
of the f0-trajectory exceeds a threshold, the switch
signal s[n] which is usually 0 will be set to 1 and
the corresponding f0 derivative value will be added
to an accumulating buffer. The value of this buffer,
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Fig. 2: Extracted modulation trajectory fmod for a
violin solo, relative to the note center frequency

which is the sum of all f0 derivative values which
exceed the threshold, is then subtracted from all
following f0 values. The result of this procedure
is the sum of fcor and fmod which is named
fAC . It contains all information with exception
of the discrete note frequency. After a simple low
pass filter with a cut off frequency at 4 Hz and a
subsequent subtraction, the modulation trajectory
fmod is isolated. The first sample of the input
signal always has to be set to 0, otherwise the

output signal can be biased. In Figure 2 a resulting
trajectory is shown. It can clearly be seen here
that not all leaps in the f0 trajectory are smoothed
out. Yet for the parts between the note boundaries
the clean sinusoidal modulations are left. Figure
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Fig. 3: Power spectral density of the fundamental
frequency trajectory f0 and the modulation trajec-
tory fmod computed with SOM filter for a violin solo

3 shows both the spectra of the f0 trajectory and
the output of the SOM filter. It can clearly be seen
here that the strong constant component in the
f0 trajectory is eliminated. In the resulting fmod

trajectory a significant peak around the reasonable
modulation frequency of approximately 10 Hz is left.

The basic parameter of the slope overload memory
filter is the threshold for the maximum allowed rela-
tive deviation. The threshold values depend on the
hop size Lhop of the f0 calculation and on the con-
tent to be analyzed. Applied threshold values vary
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from 0.01 for violin to 0.04 for singing voice record-
ings. The latter usually contain large vibrato ranges
and hence need a higher threshold in order not to
smoothen out the vibrato.

300 310 320 330 340 350

Analysis Frame

fmod amod

(a) amod and fmod with 90 degree phase shift

400 420 440 460 480

Analysis Frame

(b) amod and fmod with 180 degree phase shift

Fig. 4: Amplitude modulation trajectories (AM)
and frequency modulation trajectories (FM), both
normalized, of subsequent notes from a violin record-
ing

The extraction of the amplitude modulation trajec-
tory amod is less complicated for the analyzed pas-
sages, since there are no leaps in the temporal en-
ergy with the parameters used. The temporal energy
trajectory is also obtained with a hop size of 10 ms.
Hence a simple bandpass filter is sufficient for ex-
tracting the amplitude modulation trajectory.
The obtained trajectories fmod and amod are corre-
lated in case of vibrato, however they do not have a
fixed phase relation. Figure 4 shows how phase rela-
tions between amplitude- and frequency modulation
trajectories can vary between two adjacent notes of
the same violin recording. In 4(a) the two trajec-
tories are shifted by about 90°, whereas in 4(b) the
phase is shifted by about 180°. The phase between
these signals could only be predicted if the frequency
response of the resonating body of the instrument
was known. For our purpose we assume that the

get FM get AM

d
dt

|STFT| |STFT|

cross correlation

x[n]

f∗mod[n]

amod[n]

X[n] Y [n]

ρAM ,FM [n]

vibon[n]

Fig. 5: Flow chart of the vibrato detection algo-
rithm

phase between the two signals is arbitrary and hence
not predictable.

2.2. Vibrato Detection

After the modulation trajectories have been ex-
tracted, the vibrato detection is performed. As we
have mentioned before, it is widely known that a vi-
brato in musical instruments causes amplitude mod-
ulations. Moderate vibrato strengths of about ±35
musical cent can lead to amplitude modulations in
the partials from 3 to 15 dB [14]. This relation
will be used for the vibrato presence detection in
our approach. Whenever the frequency modulation
trajectory and the amplitude modulation trajectory
are similar to each other, regarding their amplitude
spectra, a vibrato is likely to be played. The ampli-
tude spectra are used here, since the phase relations
are ignored like this.
A block diagram of the vibrato detection algorithm
is shown in Figure 5. After the relative modulation
trajectory

f∗mod[n] = fmod[n]/fstep[n] (2)

has been differentiated, an absolute STFT is calcu-
lated for both trajectories with a triangular window
of Lwin60 samples length and a hop size Lhop of 1
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(a) Violin solo (as seen in Figure 2)
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Fig. 6: AM/FM cross correlation coefficient trajectories for different signals

sample. Since both trajectories have a sampling rate
of 10 ms this leads to a look ahead of 300 ms. For
each step the cross correlation coefficient ρAM ,FM [n]
between the resulting signals X[n] and Y [n] is cal-
culated, using Pearson’s method:

ρAM ,FM [n] =
Cov(X[n], Y [n])√

Var(X[n])Var(Y [n])
(3)

with X[n] and Y [n]:

X[n] =
∣∣∣F {f∗′

mod

[(
n− Lwin

2

)
. . .
(
n+ Lwin

2
− 1
)]}∣∣∣

(4)

Y [n] =
∣∣F {amod

[(
n− Lwin

2

)
. . .
(
n+ Lwin

2
− 1
)]}∣∣

(5)

Figure 6 shows results of the AM/FM cross corre-
lation coefficient trajectory ρAM ,FM [n] for different
input signals. For the violin solo in Figure 6(a) long
segments above a possible threshold of 0.5 can be
seen. These regions are likely to contain vibrato.
Significant local minima in this plot indicate note
transitions. In case of the drum solo in Figure

6(b) no significant regions with a high cross corre-
lation coefficient value can be seen since no vibrato
is possible here. In fact this signal is polyphonic
and does not always have a fundamental frequency.
The results for a single piano note in Figure 6(c)
also show no high cross correlation coefficient val-
ues. The piano also is a typical “no vibrato instru-
ment”, since the strings can note be modulated after
excitation. Results for the single trumpet note in
Figure 6(d) show a high cross correlation coefficient
value throughout the whole sustain phase of the note
which has been played with a strong vibrato.

The binary (on/off) vibrato detection vector vdet is
then obtained by applying a threshold to the tra-
jectory, as shown in Figure 7(a). All values below
this threshold are set to 0 (no vibrato) and all values
above the threshold are set to 1 (vibrato on). Recent
experiments showed that a threshold of 0.35 to 0.6
leads to useful results. As results of the following
evaluation section show, thresholds can be different
for individual instrument groups.
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(a) Vibrato detection by application of a threshold to
AM/FM cross correlation
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(b) Evaluation example for a violin passage (90% F-
measure)

Fig. 7: Vibrato detection by applying a threshold (a) and example of comparison between detection results
and reference (b)

3. EVALUATION

The vibrato detection algorithm is evaluated by
comparing the results of the algorithm to manually
created label files, applying the F-measure as used in
[15] and [11] for similar tasks. As test set, 28 solo in-
strument passages with a length of 2 sec to 12 sec are
used. The set is made of four instrument groups and
features seven violin passages, seven woodwind pas-
sages, seven brass passages and seven singing voice
passages. The musical content varies from classic
to jazz performances. The material is mostly dry
and without remarkable effects. Recordings within
a group are taken from different individual instru-
ments.
For the labeling process the audio software Audac-
ity has been used with one audio track containing
the raw wave file for the aural information, another
audio track featuring a representation of the f0 tra-
jectory to give a visual help in labeling and a text
track to place the labels in. In the label files the
starting point and ending point of each vibrato seg-
ment was marked. Labeling was done by two persons
independently.
One problem that arises is the correct labeling of
the files. Since vibrato is usually appearing with a
fade in and fade out it is not always clear where

to mark the boundaries. Note transitions are an-
other difficulty when labeling the vibrato regions.
The interrelation between vibrato and note transi-
tions has been addressed in [1]. In some cases the
vibrato seems not to be discontinued when a note
transition appears. That means it continues with
the same phase and frequency. In other transitions
the vibrato makes leaps in phase yet it is not dis-
continued. We decided to keep all note transitions
as non vibrato segments.
Based on the label files, vectors vref are created
which contain a 0 for non vibrato segments and a
1 for vibrato segments. These vectors have the same
sampling rate as the detection results vdet. Figure
7(b) shows a comparison of a detection result and
the corresponding reference vector. The evaluation
is then performed using the F-measure:

F =
2PR

P +R
(6)

with the precision:

P =
Number of vibrato frames detected correctly

Total number of frames containing vibrato
(7)

and the recall:

R =
Number of non-vibrato frames detected correctly

Total number of frames containing no vibrato
(8)
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(a) Results for common threshold (0.45)
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Fig. 8: Test results in precision and recall

The algorithm was evaluated in two separate tests.
In the first test all groups were evaluated with the
same parameters. A threshold of 0.02 was chosen
for the SOM filter and the cross correlation thresh-
old was set to 0.45. This lead to a mean F-measure
of 0.8000 with a mean precision of 0.8307 and a mean
recall of 0.8107. The results are presented in Figure
8(a) as a scatter plot. Woodwind and Voice each
show one significant outlier. The results at (1, 1)
are samples which contain no vibrato at all (Vio-
lin, Woodwind). In these cases the algorithm shows
no detection errors. The F-measure formula there-
for had to be modified, since in a case of no vibrato
frames it would lead to a devision of 0 by 0.
In a second test individual cross correlation thresh-
olds were chosen for each instrument group. The
values for the threshold, as well as the results, can
be seen in Table 1. In Figure 8(b) the results are vi-
sualized in a scatter plot. Violin and Brass show
slightly better performances than Woodwind and
Voice. Over all groups a mean F-measure of 0.8207
could be reached. The algorithm also showed reason-
able results for analog and digital synthesizers like
a Roland Juno (F-measure = 0.9387) or a Yamaha
DX7 (F-measure = 0.8535). In case of the Juno this
is expected, since the voltage controlled filter rep-
resents a resonant body with resonant frequencies.
For the DX7 no useful results were expected. It is
not obvious whether this can be explained with the
FM algorithm or the analog amplifier. Experiments

with pure frequency modulated sines showed no cor-
relation between AM and FM at all.

Table 1: Mean evaluation results for instrument
groups with individual cross correlation threshold

Group Threshold F-Measure Precision Recall
Violin 0.45 0.8286 0.8843 0.8043
Woodwind 0.35 0.8087 0.8225 0.8337
Brass 0.5 0.8343 0.8143 0.8829
Voice 0.6 0.8114 0.8286 0.8129

4. DISCUSSION

It could be shown that the FM/AM cross correla-
tion coefficient is a valid indicator for vibrato pres-
ence. Results of the evaluation look promising and
the presented approach might be used for several
music information retrieval tasks. The relation be-
tween AM and FM however depends on the individ-
ual instrument and the musical content. For a fixed
set of parameters this could mean that the outcome
of the cross correlation coefficient contains informa-
tion about the instrument. Evaluating further sta-
tistical analysis on the cross correlation trajectory
might lead to significant differences between differ-
ent instruments and interpreters.
If a reliable vibrato detection is desired, the parame-
ters will have to be adjusted according to the instru-
ment. Up to this point some parameters have been
tuned for the single instrument to achieve better re-

AES 131st Convention, New York, USA, 2011 October 20–23

Page 7 of 8



von Coler AND Roebel Vibrato Detection using AM FM Correlation

sults. To improve the algorithm an automatic pa-
rameter adjustment of the SOM filter threshold and
the cross correlation threshold is necessary. The al-
gorithm has not been tested using different values for
the hop size and frame size in analysis. Robustness
might be increased with a different set of parame-
ters.
Future work will include the attempt towards a more
robust vibrato detection, adjusting important pa-
rameters according to the input signals features as
well as tests for using the cross correlation coefficient
results in instrument recognition processes. In terms
of vibrato detection the presented attempt will be
combined with other features to ensure highest re-
liability, since the cross correlation trajectory itself
might not lead to a robust solution.
Finally, an application of the presented approach to
the partials amplitude modulation seems helpful be-
cause different partial amplitude modulations can
compensate each other so that the overall AM is less
meaningful. Appropriate combination of the results
obtained from individual partial AM can help here
and lead to better results.
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