
Panel: Standards from the Computer Music Community

Matthew Wright1,2, Roger Dannenberg3, Stephen Pope4, Xavier Rodet5, Xavier Serra6, David Wessel1

1 Center for New Music and Audio Technologies (CNMAT), University of California (UC), Berkeley
{matt,wessel}@cnmat.berkeley.edu

2 Center for Computer Research in Music and Acoustics (CCRMA), Stanford University
3 School of Computer Science, Carnegie Mellon University, dannenberg@cs.cmu.edu

4 Center for Research in Electronic Art Technology (CREATE), UC Santa Barbara, stp@create.ucsb.edu
5 Institut de Recherche et Coordination Acoustique/Musique (IRCAM), Paris, France, rod@ircam.fr

6 Audiovisual Institute, Universitat Pompeu Fabra, Barcelona, xserra@iua.upf.es
Links to everything in this article: http://www.cnmat.berkeley.edu/ComputerMusicStandards

Abstract
This panel discussion will review the standards that the
computer music community has produced and how these
standards were created, followed by a guided interactive
group discussion about future directions for our community
in terms of old and new standards.

1 Introduction
As researchers who use and abuse computers in the

name of music, we must by necessity use many standards
beyond our control: programming languages (e.g., C, C++,
Perl, Python...), data formats (e.g., MIDI, WAV, XML,
TCP/IP, MP3, S/PDIF, MIME...), application programmer's
interfaces (“API”s, e.g., DirectX, Core Audio, Open
Transport...), plug-in architectures (e.g., LADSPA, VST,
TDM...), operating systems (Linux, MacOS, Windows...),
etc.

Likewise, as musicians, we have inherited many
conventions and traditions that could be considered
standards, for example, 440 Hertz “A”, conventional
western music notation, the instruments in a symphony
orchestra, etc. Just as a web designer can stick to the
HTML standard to guarantee that her page will appear
correctly around the world and into the future in different
browsers, a composer can write a piece for a “standard”
medium such as vibraphone or compact disc with some
assurance that the piece will be able to be played by
different people in different places at different times.

Standards can have both beneficial and harmful effects
on our work. The benefit is that they enable progress by
providing ready-made solutions to some problems. We
would not be making very much music if we had to
completely implement our own CPUs, operating systems,
programming languages, etc! On the other hand, standards
can inhibit progress by removing degrees of freedom, for
example, MIDI's useful but extremely limited model of
music as consisting of notes played on channels. For our

experimental work (including both scientific and artistic
research), these effects are intensified.

Some would argue that the (academic) computer music
community is in a better position to create standards than
industry, which is typically years behind us, at least in
conceptualizing music representations and applications. Yet
our community has produced relatively few standards, e.g.,
compared to the computer graphics community. Almost all
of the standards we use, even the music-specific ones, come
from industry; nevertheless, a good number of useful
standards did come from (or via the help of) the computer
music community.

Another important community is the worldwide open-
source Linux audio developers group, who have provided de
facto standards such as LADSPA and Jack (not to mention
Linux itself), as well as contributing to “our” standards such
as Pd and OSC in the form of implementations, bug fixes,
user base, etc. The Planet CCRMA distribution of Linux
applications (plus low-latency kernel patches, sound drivers,
etc.) is another kind of de facto standard, both in the sense
that it provides a “standard” set of applications and in the
sense that it provides a version of the Linux kernel
optimized for low-latency sound and music making (Lopez-
Lezcano 2002).

2 What is (a) Standard?
One view of a standard is that it is a method and/or

representation that has been agreed upon by some group of
people. At the smallest scale this is just a convention,
typically informal and subject to change. A recommended
practice is more formal and better documented than a
convention, but is not as strong as a standard. A standard
should have a specification, a document describing the
standard and giving clear rules for what constitutes
conformance to the standard (or lack thereof). Adhering to
a standard promises some degree of compatibility and

interoperability among other implementations of that
standard.

We computer musicians often must cobble together
unusual combinations of hardware and software to realize
our ideas, and all of these components are constantly
becoming obsolete, changing, and being reworked. We hope
that using standards will make it easier both to connect
components together (e.g., my sound editor writes a file that
my sampler can read; my Pd patch can control my web
animation), as well as to upgrade components without
breaking the rest of the system (e.g., on my new laptop my
patch can now synthesize 1500 oscillators).

Another view is that there is a continuum of standard-
ness, and the notion of degrees of adherence to a standard.
We use computers to describe musical sounds and
processes; these descriptions can be standard to some degree
(e.g., a MIDI file), but require some special interpretation
(e.g. a specific bank of samples upon which to play it.) This
can also be seen in terms of the domains of various
standards; e.g., UDP tells you how to get a block of bytes
from point A to point B but not how those bytes should be
formatted.

Some standards, such as XML, SDIF, and OSC, are
frameworks that specify syntax and some elements of
semantics while allowing the standard-user to define and
use arbitrary “mini standards” within them.

There are also de facto standards, usually imposed by
successful software (and subsequent software designed to be
compatible with it). For example, any music programming
language with a history, repertoire, and backwards
compatibility can be considered a kind of standard, certainly
in the sense that we hope to be able to run the software
again in the future. These de facto standards often prescribe
and forbid ways of doing things, just like real standards, and
promise some of the compatibility and interoperability
benefits of real standards, but come with no guarantees of
future support. Another problem with de facto standards is
that it’s not always clear what exactly constitutes
conformance, so systems sometimes work with one
implementation but then break in unforeseen ways when
components change.

Idealistically, one would like a portable, permanently
future-compatible, easily modifiable, clear, concise
representation of the fruits of our computer music work,
including not just the results (e.g., a sound file) but
everything that went into making it (e.g., all the software,
musical representations, parameters, etc.) Often our result
is some kind of musical process (e.g., an interactive
installation) or instrument, and the only and/or best
representation is the machine that implements it.

3 Our Existing Standards
The panel session will begin with a short review of some

of the important standards that have come from the
computer music community, organized by domain. This

first part of the panel would consist of a series of short
“state of the art” presentations covering the above standards
at a very high level. For each standard, this would ideally
include the following:

♦ Brief description
♦ Interesting history in the development,

standardization process, and/or spread of the standard
♦ Notable applications and application areas (especially

if different from originally intended by the designers).
♦ Important implementations
♦ Relationship to other standards in the same area

2.1 Spatial and 3D Sound
MPEG-4 supports virtual acoustics modeling in scene

descriptions (Väänänen and Huopaniemi 1999). The
parameterization grew out of the distinction between
“physical” and “perceptual” parameters provided by
IRCAM’s Spat project (Jot 1999).

Other standards (not from our community) include
spatial sound APIs used by computer game developers and
VRML.

2.2 Music Notation
There are multiple standards for representation and

interchange of conventional western music notation. The
Standard Music Description Language1 (“SMDL”) is an old
SGML language that is no longer active; what can we learn
from it? The Guido music notation format2 (Hoos, et al.
1998) is used by the Salieri project (Hoos, et al. 1998) and
can be imported to and exported from Finale as well as
embedded in SDIF files. There is also an XML format
called MusiXML3 as well as a potential future standard from
the “MPEG Ad Hoc Group on Symbolic Music
Representation.”4

2.3 Sound Description
The MPEG7 Content Description Language5 provides a

standard format for many kinds of metadata about media
“content,” including tempo, music notation, timbre
descriptors, etc.

The Sound Description Interchange Format (“SDIF”)6

(Wright, et al. 1999) was originally conceived as an
interchange format for spectral models, but has grown to
include other forms of sound description such as F0
estimates, PSOLA grains, resonance models, and time-

1 www.infoloom.com/IHC96/at13.htm
2 www.salieri.org/GUIDO
3 www.music-notation.info/en/musixml/MusiXML.html
4 www.interactivemusicnetwork.org/mpeg-ahg
5 xml.coverpages.org/mpeg7.html
 archive.dstc.edu.au/mpeg7-ddl
www.ircam.fr/produits/technologies/Cuidad/mpeg7_info.html
6 www.ircam.fr/sdif
www.cnmat.berkeley.edu/SDIF

domain samples. SDIF is now used extensively throughout
the computer music analysis/synthesis community.

2.4 Programming Languages
Some music programming languages are true official

standards, such as MPEG4's Structured Audio Orchestra and
Score Languages7 (“SAOL” and “SASL”) (Scheirer and
Vercoe 1999). Most are de facto standards as described
above, such as Csound (Boulanger 1999), the Common Lisp
Music family (Schottstaedt 1994) (in which most of the old
Samson Box software has been reimplemented), and the
Max, jMax, Pd family, in which Miller Puckette is
reimplementing many classic computer music works as part
of his “Pd Repertory” project8 (Puckette 2001).

2.5 Audio Plug-Ins
Audio plug-in standards include AudioUnits, LADSPA,

MAS, TDM, and VST.

2.6 Real-time Control
Of course we have inherited MIDI (and its many

offspring) from the commercial synthesizer industry.
CNMAT created OpenSoundControl (“OSC”)9 as a
replacement that better met our needs (Wright and Freed
1997); OSC has spread throughout our community and is
now being adopted by the commercial music industry.

Mixing automation protocols provide a more specific
sort of real-time control within a more limited domain.

2.7 APIs
The PortMusic project (consisting of PortAudio10

(Bencina and Burk 2001) and PortMIDI11) provides
platform-independent libraries for sound and MIDI I/O,
with the goal of being as ubiquitous, portable, and easy to
use as the C “stdio” library. The OSC Kit (Wright 1998) is
a library implementing features of the OSC protocol. All of
these libraries implement standard protocols; in addition, the
APIs to these libraries are themselves standard to some
degree.

There are many libraries (with their associated APIs)
implementing sound synthesis and signal processing
subroutines, including the Synthesis ToolKit12 (“STK”)
(Cook and Scavone 1999) and the CREATE Signal
Library13 (“CSL” aka “sizzle”) (Pope and Ramakrishnan
2003).

7 sound.media.mit.edu/mpeg4
8 crca.ucsd.edu/~msp/pdrp
9 www.cnmat.berkeley.edu/OSC
10 www.portaudio.com
11 www.cs.cmu.edu/~music/portmusic
12 ccrma.stanford.edu/software/stk
13 www.create.ucsb.edu/CSL

Although SDIF is a single standard, there are two SDIF
libraries (from IRCAM and CNMAT, respectively) each
with their own API.

3 Discussion
The second half of the panel will consist of a guided

group discussion on the following topics:
♦ How do we benefit from existing standards? How

could they be more useful?
♦ What future standards (or domains of standardization)

would benefit our work?14 Are there areas where we
are wasting effort duplicating each others' work?
How can we find out what these areas are?

♦ What are the costs and rewards of standards-making?
When is it better to just do things your own way?

♦ How shall our community make the new standards
that we need? (For example, SDIF grew out of
community excitement at ICMC 95... (Freed 1995))

♦ Are there alternatives to standards? (E.g.,
conventions, open-source implementations...)

♦ What are the advantages and disadvantages of
participating in established standards organizations
(e.g., MPEG, ANSI...) versus creating smaller-scale
standards within our community (e.g., SDIF, Guido,
PortMusic, OSC...). (Subquestion: in terms of
standards, how important is the computer music
community to industry?)

♦ How can we promote “our” standards to industry?
♦ How can our community influence industry's

standards, and for what benefit?
♦ Companies often see standards as being bad for their

business, e.g., by letting customers buy competitors’
equivalent products. How does this affect our needs?

♦ How can we promote “our” standards to the open
source/Linux community? How can these two
communities mutually benefit from standards?

Future Work
After the conference, once the panel discussion has

taken place, we intend to distill the essence of the discussion
into written form15, as we did for the ICMC2000
“Analysis/Synthesis Comparison” panel session (Wright, et
al. 2000).

14 Here are some suggestions from Adrian Freed for potential
standards currently addressed mainly by mostly closed commercial
products: wireless MIDI and audio, gesture sensing and instrument
actuation, sound/media library databases, music and multimedia
MetaDatabases and query languages, and a universal gesture-
sensing hardware interface.

15 This will be linked (along with everything else from the panel)
from www.cnmat.berkeley.edu/ComputerMusicStandards

Acknowledgements
Adrian Freed first suggested this panel session topic. Other
supporters and contributors include Chris Chafe, Perfecto
Herrera, Fernando Lopez-Lezcano, James A. Moorer,
Vincent Puig, Julius Smith, and George Tzanetakis.

References
Bencina, R. and P. Burk (2001). "PortAudio - an Open Source

Cross Platform Audio API." In Proceedings of the
International Computer Music Conference, pp. 263-266.
Habana, Cuba.
(http://www.portaudio.com/docs/portaudio_icmc2001.pdf)

Cook, P. R. and G. P. Scavone (1999). "The Synthesis ToolKit
(STK)." In Proceedings of the International Computer Music
Conference, pp. 164-166. Beijing, China: ICMA.
(http://ccrma.stanford.edu/software/stk/Papers/stkicmc99.pdf)

Freed, A. (1995). "Bring Your Own Control Additive Synthesis."
In Proceedings of the International Computer Music
Conference. Banff, Canada: ICMA.

Hoos, H. H., K. A. Hamel, K. Renz and J. Kilian (1998). "The
GUIDO Notation Format: A Novel Approach for Adequately
Representing Score-Level Music." In Proceedings of the
International Computer Music Conference, pp. 451-454. Ann
Arbor: ICMA.

Hoos, H. H., J. Kilian, K. Renz and T. Helbich (1998). "SALIERI:
A General, Interactive Computer Music System." In
Proceedings of the International Computer Music Conference,
pp. 385-392. Ann Arbor: ICMA.

Jot, J. M. (1999). "Real-time spatial processing of sounds for
music, multimedia and interactive human-computer
interfaces." Multimedia Systems 7(1), 55-69.

Lopez-Lezcano, F. (2002). "The Planet CCRMA software
collection." In Proceedings of the International Computer
Music Conference, pp. 138-141. Göteborg, Sweden: ICMA.

Pope, S. T. and C. Ramakrishnan (2003). "The CREATE Signal
Library ("Sizzle"): Design, Issues, and Applications." In
Proceedings of the International Computer Music Conference,
pp. 415-422. Singapore: International Compuer Music
Association.

Puckette, M. (2001). "New Public-Domain Realizations of
Standard Pieces for Instruments and Live Electronics." In
Proceedings of the International Computer Music Conference,
pp. 377-380. Habana, Cuba: ICMA.
(http://www.crca.ucsd.edu/~msp/Publications/icmc01-rep)

Scheirer, E. D. and B. L. Vercoe (1999). "SAOL: The MPEG-4
Structured Audio Orchestra Language." Computer Music
Journal 23(2), 31-51.

Schottstaedt, B. (1994). "Machine Tongues XVII: CLM: Music V
Meets Common Lisp." Computer Music Journal 18, 30-37.

Väänänen, R. and J. Huopaniemi (1999). "Virtual Acoustics
Rendering in MPEG-4 Multimedia Standard." In Proceedings
of the International Computer Music Conference, pp. 585-588.
Beijing: ICMA.

Wright, M. (1998). "Implementation and Performance Issues with
OpenSound Control." In Proceedings of the International
Computer Music Conference, pp. 224-227. Ann Arbor,
Michigan: ICMA. (http://cnmat.Berkeley.EDU/ICMC98/papers-
html/OSC-kit.html)

Wright, M., J. Beauchamp, K. Fitz, X. Rodet, A. Röbel, X. Serra
and G. Wakefield (2000). "Analysis/Synthesis Comparison."
Organised Sound 5(3), 173-189.
(http://cnmat.berkeley.edu/ICMC2000/panel/AnalysisSynthesis-
Compare.pdf)

Wright, M. and A. Freed (1997). "Open Sound Control: A New
Protocol for Communicating with Sound Synthesizers." In
Proceedings of the International Computer Music Conference,
pp. 101-104. Thessaloniki, Hellas: International Computer
Music Association.
(http://cnmat.CNMAT.Berkeley.EDU/ICMC97/papers-
html/OpenSoundControl.html)

