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ABSTRACT

This article is concerned with the estimation of fundamental fre-
quencies, orF0s, in polyphonic music. We propose a new method
for jointly evaluating multipleF0 hypotheses based on three phys-
ical principles: harmonicity, spectral smoothness and synchronous
amplitude evolution within a single source. Based on the genera-
tive quasiharmonic model, a set of hypothetical partial sequences
is derived and an optimal assignment of the observed peaks to the
hypothetical sources and noise is performed. Hypothetical partial
sequences are then evaluated by a score function which formulates
the guiding principles in a mathematical manner. The algorithm
has been tested on a large collection of artificially mixed poly-
phonic samples and the results show the competitive performance
of the proposed method.

1. INTRODUCTION

Automatic transcription of polyphonic music has attracted involve-
ments in several research topics including multiple fundamental
frequency estimation, onset detection, rhythm/meter estimation,
etc.. Despite increasing research activities with respect to poly-
phonic music signals, the estimation of multipleF0s remains a
challenging problem. Some of the generally admitted difficul-
ties are: estimating the number ofF0s, retrieving reliable time-
frequency properties and treating mixtures of transient parts and
stationary parts. These difficulties mainly come from the multi-
timbre mixture of various musical instruments, diverse spectral
characteristics which are related to different playing techniques,
chords consisting of harmonically relatedF0s and acoustical in-
terference such as reverberation.

In the present investigation we focus on estimatingF0sin mu-
sical signals when the number ofF0s is known in advance. The
importance of including higher level features in addition to pe-
riodicity/harmonicity in multipleF0 estimation has been demon-
strated by most of the existing approaches. Martin has proposed
a blackboard system gathering all available knowledge to rateF0
hypotheses [1]. Goto [2] introduces tone models as a constraint
on relative partial amplitudes. In Klapuri’s multipleF0 estima-
tion algorithm, the spectral smoothness principle is a key to deal
with overlapped partials [3]. For the probabilistic signal model-
ing approach presented in [4], the prior distributions of the model
parameters are in fact physical constraints on spectral models in
search. The core of our multipleF0 estimation is a score function
which jointly evaluates multipleF0 hypotheses. Based on a gener-
ative quasiharmonic spectral model, hypothetical partial sequences
are constructed and evaluated based on three physical principles:

harmonicity, spectral smoothness and synchronous amplitude evo-
lution within a single source.

This paper is organized as follows. In section2, the generative
quasiharmonic model is described and the principles forF0 esti-
mation are established. In section3, we introduce a frame-based
F0 estimation method using a physical principle driven score func-
tion. In section4, experimental results are shown, which proves
the competitive performance of the proposed method. Finally, we
discuss this method and draw conclusions.

2. GENERATIVE QUASIHARMONIC MODEL

The proposed algorithm is based on a polyphonic quasiharmonic
signal model of the following form

y[n] =
{ M∑

m=1

Hm∑
hm=1

am,hm [n] cos
(
(1 + δm,hm)hmωmn

+ φm[n]
)}

+ v[n], (1)

wheren is the discrete time index,M is the number of sources,
Hm is the number of partials for them-th source,ωm represents
theF0 of sourcem andφm[n] denotes the phase. The score func-
tion used here makes use ofam,h[n] andδm,h which are the time
varying amplitude and the constant frequency detuning of theh-th
partial, and alsov[n] which is the residual noise component. Gen-
erally it is supposed that the noise is sufficiently small such that a
considerable part of the individual sinusoidal components can be
identified.

Similar to [5] we understand the observed spectrum as gener-
ated by sinusoidal components and noise, and all necessary infor-
mation forF0 estimation is to be extracted from the properties of
spectral peaks. Each peak is considered either sinusoidal or noise.
A sinusoidal peak is assigned to one or more of theM sources
in eq.(1), all unassigned peaks contribute to the noise component
v[n]. Based on this model and given the observed spectrum and
M , the most plausibleF0 hypotheses are going to be inferred. To
construct and evaluate hypothetical sources, we rely on the three
physical principles:

Principle 1: Spectral match with low inharmonicity. For each
F0hypothesis, a hypothetical partial sequence,HPS, is constructed
by selecting harmonically matched peaks from the observed spec-
trum in such a way thatδm,h are minimized. The set{HPSF0m}M

m=1

corresponding toM hypothetical sources should combinatorially
explain as many peaks as possible of the observed spectrum such
that the remaining noise energy is minimized.



Principle 2: Spectral smoothness. The spectral envelopes of
musical instrument sounds tend to form smooth contours [3]. While
constructing theHPSof a source, the partials should be selected
in a way such that{am,h}Hm

h=1 results in a spectral envelope as
smooth as possible.

Principle 3: Synchronous amplitude evolution within a single
source. Partials belonging to the same source should have similar
time evolution of the amplitudes{am,h}Hm

h=1 contained in aHPS.
If the partials assigned to a hypothetical source match mostly to
noisy peaks, they evolve in a random manner and thus will not
have a synchronous amplitude evolution.

3. MULTIPLE F0 ESTIMATION

Based on the three principles described above, we design a mul-
tiple F0 estimation system. The main task is to formulate these
principles into four criteria serving as the core components in a
score function for evaluating the plausibility of one set ofF0 hy-
potheses.

3.1. Front end

While analyzing polyphonic signals with limited spectral reso-
lution, one often observes that the dense distribution of partials
causes some peaks to be hidden by relatively larger coincident
ones. Thus, we evaluate the shapes of the observed peaks and their
spectral properties proposed in [6] to choose the possibly over-
lapped peaks which are then processed to extract hidden peaks.

To generate anF0 candidate list, we use a harmonic matching
technique. For eachF0 hypothesis, a vectordF0 is constructed
to evaluate the degree of deviation from a harmonic model to the
observed peaks, and a tolerance interval around each harmonic is
used to measure the goodness of harmonic matching. For thei-th
observed peak matching theh-th harmonic, the degree of deviation
is formulated as

dF0(i) =
|fpeak(i) − fmodel(h)|

α · fmodel(h)
(2)

wherefpeak(i) is the frequency of thei-th observed peak,fmodel(h)
is the frequency of theh-th harmonic of the model, andα deter-
mines the tolerance interval. If an observed peak situates outside
the corresponding tolerance interval, it is regarded as unmatched
and dF0(i) is set to 1. Then we define the harmonic matching
function as:

HARF0 =

I∑
i=1

Corr(i) · Spec(i) · dF0(i)∑
i[Corr(i) · Spec(i)]

(3)

whereI is the number of observed peaks,Corr is the complex
correlation between each observed peak and an ideal sinusoidal
peak defined by the analysis window,Spec is the peak energy vec-
tor. Since inharmonicity exists in most of the string instruments,
it is necessary to dynamically adapt the frequencies of model har-
monics according to the best matched peak. This is realized by
the partial selection technique. We start with the fundamental by
simply assigning it to the closest peak observed. For the follow-
ing partials we consider two candidate peaks: the one closest to
fmodel(h) and the one of which the mainlobe containsfmodel(h).
Compared to the formerly selected partials, the peak candidate
forming a smoother envelope is selected as the best matched peak.
Thenfmodel(h + 1) is calculated by means of addingF0 to the

frequency of the best matched peak. If there is no peak assigned to
the current partial,fmodel(h)+F0 is used for the next match. All
the peaks having been assigned to anF0 hypothesis are forming
theHPS. TheF0 hypotheses corresponding to local maxima of the
harmonic matching function are added to the candidate list. Then,
all possible combinations of the candidates will be evaluated by a
score function.

Although theHPSof eachF0 candidate has been constructed
during harmonic matching, the overlapped partials need to be taken
care of. The treatment of overlapped partials is based on the idea
that an overlapped partial still carries important information for at
least theHPSthat locally has the strongest energy. Therefore, the
algorithm aims to assign the overlapped partial to thisHPS. Con-
structing aHPS in fact utilizesPrinciple 2and the knowledge of
spectral locations where partial overlaps may occur according to
the current set ofF0 hypotheses under investigation. The guiding
principle is to make use of the credibility of available information.
The strategy for treating the overlapped partials is listed below:

(i) Partials having potential collision are determined from each
hypothetical combination ofHPSs.

(ii) The local energy strength of the envelope is obtained by
means of interpolating the neighboring partial amplitudes
that are not collided. By comparing the interpolated am-
plitudes estimated from all theHPSs of a hypothetical set
of F0 candidates, the overlapped partial is exclusively as-
signed to the one having the most dominant interpolated
amplitude among all and then labeled as “effective” which
means that it can be used for interpolation for its neighbor-
ing partials. The rest of theHPSs the overlapped partial
is considered “not effective” and is labeled as existing but
without a specified partial amplitude.

(iii) If one neighboring partial happens to be overlapped and not
effective, the non-overlapped partial at the other side is used
instead. If the two neighboring partials are not effective,
the correspondingHPSis not considered as having reliable
information for interpolation and is thus excluded.

(iv) If the amplitude of the overlapped partial is smaller than
any interpolated amplitude, it is difficult to infer whichF0
hypothesis contributes the most and thus partial assignment
is not carried out but this overlapped peak in allHPSs are
labeled as “effective” for further use of interpolation.

3.2. The score function

Having constructed the most reasonableHPSs for each set ofF0
hypotheses, we design a score function to rank these hypotheti-
cal sets. The score function formulates the three principles into
four criteria: harmonicityHAR, mean bandwidthMBWand effec-
tive lengthEFL of HPSs, and the standard deviation of mean time
SYNC.

HAR is an indication of harmonicity and totally “explained”
energy. It is formulated as eq.(3) withdF0(i) replaced by

dM (i) = min
(
{dF0m(i)}M

m=1

)
(4)

That is, each observed peak is matched with the closest partial
among those of{HPSF0m}M

m=1 and thus each combination under
investigation can perform its optimal match.

To evaluate the smoothness of aHPS, we use the mean band-
width as a criterion. EachHPS is assembled with its flipped se-



quence to constructSF0m for further evaluation. ApplyingK-
point FFT toSF0m , we obtain the linear spectrumXF0m and cal-
culate the mean bandwidthMBWF0m as

MBWF0m =

√√√√2 ·
∑K/2

k=1 k[XF0m(k)]2∑K/2
k=1 [XF0m(k)]2

(5)

This indicates the degree of energy concentration in the low fre-
quency region and thusSF0m with less variation results in a smaller
value ofMBWF0m .

For the signal produced by a musical instrument, the spectral
centroid tends to lie around lower partials because higher partials
often decay gradually. From this general principle related toPrin-
ciple 2, we can similarly evaluate the energy spread of aHPS in
terms of the effective length ofSF0m . Instead of removing the
non-reliable components fromHPSF0m , we use linear interpola-
tion to reconstruct an estimated partial sequenceEPSF0m . Then
the effective length ofHPSF0m can be calculated as

EFLF0m =

√
2 ·

∑Nm
n=1 n[EPSF0m(n)]2

L ·
∑Nm

n=1[EPSF0m(n)]2
(6)

whereNm is the length ofEPSF0m . L is a normalization factor
determined bybF90/F0minc, whereF90 stands for the frequency
limit containing90% of spectral energy in the analyzing frequency
range andF0min is the minimal hypotheticalF0 in search. Since
the spectral envelopes of musical signals are not always smooth,
this criterion functions as the further test of physical consistency of
Principle 2and acts as a penalty function for subharmonics which
explain more than one source in the observed spectrum.

To evaluate the synchronicity of the temporal evolution of the
hypothetical sinusoidal components in aHPS, we rely on the esti-
mation of the mean time for individual spectral peaks. Mean time
is an indication of the center of gravity of signal energy [7] and the
mean time of a spectral peak can be used to characterize the am-
plitude evolution of the related signal [8]. For a coherentHPSwe
expect synchronous evolution resulting in a small variance of mean
time concerning the collection of peaks. The mean time of a hypo-
thetical source, denoted asTF0m , is calculated as the power spec-
trum weighted sum of the mean time of the hypothetical partials.
The standard deviation of mean time of the partials inHPSF0m is
then formulated as

SYNCF0m =
1

win/2

√√√√ I∑
i=1

{[t̄i − TF0m ]2 · wF0m(i)} (7)

wherewin is the window size,̄ti denotes the mean time of thei-th
observed peak. The weighting vector{wF0m(i)}I

i=1, normalized
to be summed to one, is constructed fromHPSF0m by setting zeros
for the following components: (i) non-reliable partials due to over-
laps and (ii) close partials of which spectral phases are probably
disturbed. Lastly,{wF0m(i)}I

i=1 is compressed by an exponential
factor to reduce the dynamic range such that the significance of
spurious peaks is raised. This makes use of the spurious peaks to
penalize more aHPScontaining more spurious peaks.

Here we define “effective energy”, denoted asEengyF0m
, for

eachF0 hypothesis as the sum of linear amplitudes ofHPSF0m .
Then{MBWF0m}M

m=1, {EFLF0m}M
m=1 and{SYNCF0m}M

m=1 of
a set ofF0 hypotheses are weighted by the effective energy and

then summed to defineMBW, EFL andSYNC, respectively. The
final score function is formulated as

D = p1 · HAR+ p2 · MBW+ p3 · EFL + p4 · SYNC (8)

where{pj}4
j=1 are the weighting parameters for the four criteria.

These criteria are designed in a way that a smaller weighted sum
stands for higher score. Notice thatHARfavors lower hypothetical
F0s whileMBW, EFL andSYNCfavor higher ones. Therefore, the
criteria perform in a complementary way and the weighting pa-
rameters should be optimized to balance the relative contribution
of each criterion such that the score function generally supports
the correct combinations ofF0s the best. Similar to theF0 refin-
ing technique in [5], we apply a linear regression ofF0s estimated
from the effective hypothetical partials.

4. EXPERIMENTAL RESULTS

To evaluate the proposedF0 estimation method, we perform a
frame-based test using mixtures of musical samples. Non-transient
parts of monophonic musical samples are pre-selected and then
mixed with equal mean-square energy to generate polyphonic sam-
ples. Estimation of a polyphonic sample is performed within a
single frame. The number ofF0s is given in advance for theF0
estimation system to find the most probable set ofF0 hypotheses.

The parameters to be optimized are the weighting parameters
{pj}4

j=1 in the score function andα for determining the tolerance
interval in eq(2). 300 polyphonic samples containing 100 sam-
ples for each voice mixture are generated by randomly mixing
musical instrument samples from the University of Iowa1. Then
the parameters are optimized utilizing the evolutionary algorithm
[9] and the set of parameters of the best performance({pj}4

j=1 =
{0.3774, 0.2075, 0.2075, 0.2075}, α = 0.035) is used for the fi-
nal evaluation on a large database. Specifications for this test are
described below:

• Three databases: two-voice, three-voice and four-voice mix-
tures, labeled as TWO, THREE and FOUR respectively, are
generated using musical samples from McGill University2,
Iowa University and IRCAM (Studio On Line). In com-
biningM -voice polyphonic samples,M out of twelve tone
names are preliminarily assigned and the monophonic sam-
ples ranging from65Hz to 2000Hz are randomly mixed.
Totally around 4800 samples are generated in a way that
each combination of tone names are of equal proportion.
Musical instrument samples not fitting the quasiharmonic
model are excluded, such as the mallet percussion instru-
ments and the bells [10]. To facilitate comparison, the database
is published on the author’s web page [11].

• The search range forF0 is set from50Hz to2000Hz and the
observed spectrum is analyzed up to5000Hz. A Blackman
window is used for analysis.

• F0 reference values are created from singleF0 estimation
of monophonic samples before mixing. A correct estimate
should not deviate from the corresponding reference value
by more than3%. The error rates are computed as the num-
ber of wrong estimates divided by the total number of target
F0s.

1http://theremin.music.uiowa.edu/MIS.html
2http://www.music.mcgill.ca/resources/mums/html/



The testing results using two analysis window sizes,186ms
and93ms, are shown in Table 1. Since musical samples mixed
randomly surely contain harmonically related notes, we present
the error rates for two groups of samples: one group of mixtures
containing harmonically related notes, labeled as “harmonical”,
and another group “non-harmonical”. The overall error rates are
shown in the “total” columns. The percentages of samples in the
group “harmonical” are21.89%, 51.62% and55.54% for the three
databases TWO, THREE and FOUR, respectively.

polyphony window non-harmonical harmonical total

TWO 186ms 0.38% 2.90% 0.93%
93ms 1.19% 4.05% 1.82%

THREE 186ms 1.03% 5.11% 3.13%
93ms 3.31% 6.78% 5.10%

FOUR 186ms 1.78% 6.61% 4.46%
93ms 5.77% 11.41% 8.90%

Table 1. F0 estimation results

The errors in the group “non-harmonical” are quite small which
proves the competitive performance of the proposed method. The
result also demonstrates the possibility of estimating harmonically
relatedF0s for the case when the mixing notes are of similar en-
ergy. To study the significance of each criterion exceptHAR in the
score function, we perform three further tests by deactivating one
of MBW, EFL andSYNCin each test. The comparison with the
original result is shown in Figure 1. It is observed that the deacti-
vation of any of the three criteria degrades the overall performance.

2 3 4
0

2

4

6

8

10

12

14

er
ro

r 
ra

te
 (

%
)

186 ms

2 3 4
0

2

4

6

8

10

12

14

polyphony

93 ms

no MBW
no EFL
no SYNC
ALL

no MBW
no EFL
no SYNC
ALL

Fig. 1. Performance comparison while each criterion is deactivated

A great proportion of errors are caused by the ambiguity con-
cerning targetF0s and their subharmonics or superharmonics. Poly-
phonic samples mixed with musical instrument samples of rich
resonances do not match the generative quasiharmonic model and
thus are difficult to evaluate. If there exist strong resonances in
addition to the partials (as observed in the string instruments), it is
difficult to distinguish which part of energy relates to resonances
while evaluatingHAR. If strong resonances boost certain partials

too much (as observed in oboe) and thus introduce more variations
in the spectral envelope, the combination ofMBWandEFL might
still risk to reduce the score too much. If the partials are far less
dominant than the fundamental (as generated by plucking string in-
struments), it is more likely that the properties of the weak partials
are more noise-like andSYNCdoes not present a fair indication of
the synchronous evaluation of partial amplitudes.

5. CONCLUSION

We have presented a new method to estimate multipleF0s for mu-
sical signals based on three physical principles. The three prin-
ciples could be interpreted as reasonable prior distributions for
all parameters in the generative spectral model. Instead of using
an analytical approach, we optimize each hypothetical partial se-
quence based on these principles and then compare the credibil-
ity of possible combinations amongF0 hypotheses using a score
function. Evaluation over a large polyphonic database has shown
encouraging results. In order to complete theF0 estimation sys-
tem, we are continuing our studies of the estimation of the number
of sources and the integration of temporal information.
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