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RÉSUMÉ

La fréquence fondamentale, dite F0, est un descripteur essentiel des signaux audio

de musique. Bien que les algorithmes d’estimation de F0 unique aient considérable-

ment progressé, leur application aux signaux de musique reste limitée parce que la

plupart d’entre eux contiennent non pas une, mais plusieurs sources harmoniques en

même temps. Par conséquent, l’estimation des F0s multiples est une analyse plus

appropriée, et qui permet d’élargir le champ d’application à des tâches telles que

la séparation de sources, l’extraction d’information de musique ou la transcription

automatique de la musique.

La difficulté d’estimer des F0s multiples d’un signal audio réside dans le fait que les

sources sonores se superposent souvent dans le domaine temporel ainsi que dans le

domaine fréquentiel. Les informations extraites sont en partie ambiguës. En par-

ticulier, lorsque des notes de musique en relation harmonique sont jouées en même

temps, les partiels des notes aiguës peuvent recouvrir les partiels des notes graves.

D’ailleurs, les caractéristiques spectrales des instruments de musique sont variées, ce

qui augmente l’incertitude des amplitudes estimées des partiels des sources sonores.

La complexité qui en résulte génère aussi une ambiguïté d’octave et il est d’autre

part difficile d’estimer le nombre de sources. Cette thèse traite ces problèmes en trois

étapes: l’ estimation du bruit, l’évaluation conjointe des F0 hypothèses, et l’inférence

de la polyphonie.

Le signal observé est modélisé par la somme de plusieurs sources harmoniques et

du bruit, où chaque source harmonique est modélisée par une somme de sinusoïdes.

Dans le cas de l’estimation des F0s, le nombre de sources est à estimer également. Si

la partie bruit n’est pas estimée à l’avance, le nombre de sources risque d’être sures-

timé, les sources supplémentaires servant à expliquer la partie bruit. Un algorithme

d’estimation du niveau de bruit est donc développé afin de distinguer les pics relatifs

au bruit des pics sinusoïdaux qui correspondent aux partiels des sources harmoniques.

Une fois les composantes spectrales identifiées comme étant des sinusoïdes ou du

bruit, les partiels d’un ensemble de sources hypothétiques devraient s’ajuster à la plu-

part des pics sinusoïdaux. Afin d’évaluer leur plausibilité, un algorithme d’estimation

conjointe est proposé, ce qui permet de traiter le problème des partiels superposés.

L’algorithme d’estimation conjointe proposé est fondé sur trois hypothèses liées aux

caractéristiques des instruments de musique: l’harmonicité, la douceur de l’enveloppe

spectrale, et l’évolution synchrone des amplitudes des partiels. Lorsque le nombre

de sources est connu, les F0s estiméees sont déterminés par la combinaison la plus



probable. Dans ce cas, l’algorithme proposé donne un résultat prometteur qui se

compare favorablement à l´état de l’art.

L’estimation conjointe des F0s multiples permet de traiter de manière satisfaisante le

problème des partiels superposés. Cependant, le temps de calcul de cette approche

est élevé, parce que le nombre de combinaisons hypothétiques s’accroît exponen-

tiellement avec le nombre de F0s candidats. Au contraire, l’approche basée sur une

estimation itérative est plus rapide mais elle est moins optimale pour traiter le prob-

lème des partiels superposés. Dans l’espoir d’obtenir d’une part efficacité et d’autre

part robustesse, ces deux approches sont combinées. Un algorithme itératif de sélec-

tion des F0s candidats, visant à en diminuer le nombre, est proposé. Comparé à

deux fonctions de saillance polyphonique, cet algorithme itératif réduit de cents fois

le nombre de candidats en perdant seulement 1 à 2% de la précision d’estimation

des F0s multiples. Le résultat montre d’ailleurs qu’une augmentation du nombre des

F0s candidats ne garantit pas une meilleure performance de l’algorithme d’estimation

conjointe.

L’estimation du nombre de sources, dite inférence de la polyphonie, est le problème

le plus ardu. L’approche proposée consiste à faire une hypothèse sur le nombre de

sources maximal et ensuite à sélectionner les meilleures F0s estimés. Pour cela, les

F0s candidats qui se trouvent dans les meilleures combinaisons, sous l’hypothèse du

nombre de sources maximal, sont retenus. L’estimation finale des F0s est obtenue en

vérifiant de manière itérative les combinaisons de F0s sélectionnées selon l’ordre de

probabilité de chaque F0. Une hypothèse de F0 est considérée comme valide si elle

permet d’expliquer des pics d’énergie significatifs ou si elle améliore la douceur de

l’enveloppe spectrale pour l’ensemble des F0s estimés.

Le système proposé est évalué en utilisant une base de données de morceaux de

musique construite spécialement pour l’occasion. La précision obtenue est environ

65%. Lors de la compétition d’estimation de F0s multiples de MIREX (Music Infor-

mation Retrieval Evaluation eXchange) 2007, le système proposé a été évalué comme

l’un des meilleurs parmi les 16 systèmes soumis.

Mots-Clés: estimation de la fréquence fondamentale, estimation du bruit, sépara-

tion de sources, transcription automatique de la musique, analyse du signal.



ABSTRACT

The fundamental frequency, or F0, is an essential descriptor of music sound signals.

Although single-F0 estimation algorithms are considerably developed, their applica-

tions to music signals remain limited, because most music signals contain concurrent

harmonic sources. Therefore, multiple-F0 estimation is a more appropriate analysis,

which broadens the ranges of applications to source separation, music information

retrieval, automatic music transcription, amongst others.

The difficulty of multiple-F0 estimation lies in the fact that sound sources often over-

lap in time as well as in frequency. The extracted information is partly ambiguous.

Above all, when musical notes are played in harmonic relations, the partials of higher

notes may overlap completely with those of lower notes. Besides, spectral character-

istics of musical instrument sounds are diverse, which increases the ambiguity in the

estimation of partial amplitudes of sound sources. The resulting complexity causes

not only octave ambiguity but also the ambiguity in the estimation of the number of

sources. This thesis addresses these problems in three stages: noise estimation, joint

evaluation of F0 hypotheses, and polyphony inference.

The observed sound signal is modeled as a sum of several harmonic sources and noise,

where each harmonic source is modeled as a sum of sinusoids. To estimate multiple

F0s, the number of sources is to be inferred. If the noise part is not estimated

beforehand, the number of sources can be overestimated when unnecessary sources

are simply used to explain the noise. A noise level estimation algorithm is therefore

developed to distinguish sinusoidal peaks, considered to be the partials of harmonic

sources, from noise peaks.

Once the spectral peaks are classified according to the estimated noise level, the

partials of a set of hypothetical sources should match most of the sinusoidal peaks. To

evaluate the plausibility of a set of hypothetical sources, a joint estimation algorithm

is proposed which makes the most of the handling of overlapping partials. The

joint estimation algorithm is based on three assumptions of the characteristics of

harmonic instrument sounds: harmonicity, the smoothness of spectral envelope and

synchronous evolution of partial amplitudes. When the number of sources is known,

the estimated F0s are determined by the hypothetical combination with the best

score of plausibility. In this case, the proposed algorithm demonstrates a promising

result which is competitive to those of existing methods.

Joint estimation of multiple F0s allows a correct handling of ambiguous partial am-

plitudes. However, the downside is its computational demand because the number



of hypothetical combinations grows exponentially with the number of F0 candidates.

Alternatively, the iterative estimation approach has an advantage in efficiency but

is less optimal in the handling of overlapping partials. The combination of the two

approaches can thus be expected to achieve both efficiency and robustness. An itera-

tive estimation algorithm is proposed for candidate selection, aiming at the reduction

of the number of candidates. Compared with two polyphonic salience functions, the

iterative algorithm reduces hundred times of the number of candidates while losing

only 1 to 2% of accuracy for multiple-F0 estimation. The result also demonstrates

that more candidates does not guarantee a better performance for the joint estimation

algorithm.

The estimation of the number of sources, or polyphony inference, is the most chal-

lenging problem. The proposed approach is to first estimate the maximal polyphony

and then to consolidate the F0 estimates. The F0 candidates kept in the best com-

binations of the maximal polyphony are combined and verified iteratively, in order

of their respective probabilities, to yield the final estimates. An F0 hypothesis is

considered a valid estimate if it either explains significant energy or improves the

spectral smoothness of the set of the valid F0 estimates.

The proposed system is evaluated by a specially constructed music database. The

average accuracy rate is about 65%. In the multiple-F0 estimation contest of MIREX

(Music Information Retrieval Evaluation eXchange) 2007, it has been evaluated as

one of the best among 16 submitted systems.

Keywords: fundamental frequency estimation, noise estimation, source separation,

automatic music transcription, signal analysis.



CONTENTS

OVERVIEW 1

1 INTRODUCTION 3

1.1 Fundamental Frequency (F0) of a Periodic Signal . . . . . . . . . . . . . . . . . . 4

1.1.1 Period and fundamental frequency . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 Fourier series representation of periodic signals . . . . . . . . . . . . . . . 4

1.1.3 Physical properties of harmonic instrument sounds . . . . . . . . . . . . . 5

1.1.4 Fundamental frequency and pitch . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Single-F0 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Time domain approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.2 Spectral domain approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Multiple-F0 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 Problem Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.2 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 STATE OF THE ART 21

2.1 Iterative Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.1 Direct cancellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.2 Cancellation by spectral models . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Joint Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Joint cancellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.2 Polyphonic salience function . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.3 Spectral matching by non-parametric models . . . . . . . . . . . . . . . . 24

2.2.4 Statistical modelling using parametric models . . . . . . . . . . . . . . . . 25

2.2.5 Blackboard system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 On Estimating the Number of Sources . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

ix



2.4.1 Signal representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.2 Iterative estimation or joint estimation . . . . . . . . . . . . . . . . . . . . 28

2.4.3 HRF0s and NHRF0s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 PROPOSED METHOD 31

3.1 Generative Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Guiding Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 ADAPTIVE NOISE LEVEL ESTIMATION 37

4.1 Generative Noise Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Existing Approaches to Noise Level Estimation . . . . . . . . . . . . . . . . . . . 38

4.3 Modelling Narrow Band Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Iterative Approximation of the Noise Level . . . . . . . . . . . . . . . . . . . . . . 42

4.5 Testing and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 JOINT EVALUATION OF MULTIPLE F0 HYPOTHESES 51

5.1 Generating Hypothetical Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1.1 Harmonic matching for partial selection . . . . . . . . . . . . . . . . . . . 52

5.1.2 Overlapping partial treatment . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1.3 Spectral flattening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Score Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2.1 Harmonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2.2 Mean bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2.3 Spectral centroid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2.4 Synchronicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Score Criteria for Musical Instrument Sounds . . . . . . . . . . . . . . . . . . . . 59

5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 ITERATIVE EXTRACTION OF F0 CANDIDATES 65

6.1 Polyphonic Salience Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.1.1 Harmonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.1.2 Partial beating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.2 Extraction of Non-Harmonically Related F0s (NHRF0s) . . . . . . . . . . . . . . 68

6.3 Detection of Harmonically Related F0s (HRF0s) . . . . . . . . . . . . . . . . . . 70

6.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7 ESTIMATING THE NUMBER OF CONCURRENT SOURCES 77

x



7.1 Polyphony Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.1.1 Estimation of the maximal polyphony . . . . . . . . . . . . . . . . . . . . 78

7.1.2 Consolidation of multiple F0 hypotheses . . . . . . . . . . . . . . . . . . . 80

7.2 Database Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.2.1 Annotating real recordings . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.2.2 Artificially mixed polyphonic samples . . . . . . . . . . . . . . . . . . . . 86

7.2.3 Synthesized polyphonic music . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.4 Multiple F0 Tracking in Solo Recordings of Monodic Instruments . . . . . . . . . 102

8 CONCLUSIONS AND PERSPECTIVES 107

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A The Magnitude Distribution of White Gaussian Noise 111

B Spectral Descriptors for Sinusoid/Non-Sinusoid Classification 113

C Sinusoidal Parameter Estimation 117

C.1 Short-time stationary sinusoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

C.2 Short-time non-stationary sinusoids . . . . . . . . . . . . . . . . . . . . . . . . . . 118

C.3 Selected methods for noise level estimation . . . . . . . . . . . . . . . . . . . . . . 118

D The Expected Amplitude of Overlapping Partials 123

E A New F0 Salience Function based on Inter-Peak Beating 129

Bibliography 141

xi



xii



OVERVIEW

The scope of this thesis is the estimation of multiple fundamental frequencies (F0s) of polyphonic

music recordings. The objective is to develop a frame-based multiple-F0 estimation system. The

thesis begins with an introduction of the fundamentals of F0 estimation, followed by a review of

the state-of-the-art methods for the problem of multiple-F0 estimation. Then, the algorithm for

each part of the proposed system is presented and evaluated. The thesis is laid out as follows:

In Chapter 1, the problem of single-F0 estimation is defined, which leads to the problem

definition of multiple-F0 estimation. Several single-F0 estimation algorithms are reviewed, which

forms the basis of the study of the multiple-F0 estimation problem. Because harmonic instrument

sounds are the main concern of this thesis, their physical properties are surveyed and summarized.

The difficulties of estimating multiple F0s in polyphonic music signals are then discussed.

In Chapter 2, the state of the art for multiple-F0 estimation is reviewed. The existing methods

are categorized into two groups: the iterative estimation approach and the joint estimation

approach. Several criteria for the estimation of the number of sources are summarized. The

common problems encountered are discussed, which lays the foundations for the development of

the proposed method.

In Chapter 3, three major problems to be addressed are identified and the proposed approach

is presented. The development of the system is based on a generative signal model and three

physical principles of musical instrument sounds. The system overview is given, which sum-

marizes the model assumptions and the step-by-step procedures of the multiple-F0 estimation

system.

In Chapter 4, an adaptive noise estimation algorithm is presented based on a generative noise

model. Following two existing methods, it describes the noise level as a cepstrally liftered curve

which classifies spectral peaks into sinusoids and noise. The precision of the estimated noise

level is experimentally evaluated by means of a white noise signal, with or without embedded

sinusoids.

In Chapter 5, an algorithm for joint estimation of multiple F0 hypotheses is presented. This

algorithm is based on the assumption that the number of F0s is given. The joint estimation

algorithm focuses on the handling of the overlapping partials and the scoring of a hypothetical

combination. The essence of the algorithm is a score function that jointly evaluates the plausibil-

ity of a combination of F0 hypotheses. The design purpose of the score criteria is demonstrated

using monophonic samples of musical instrument sounds. Then, the joint estimation algorithm

1



is evaluated by artificially mixed polyphonic samples.

In Chapter 6, three candidate selection methods are proposed, aiming at reducing the number

of hypothetical combinations to be evaluated by the score function. Two F0 salience functions and

an iterative estimation algorithm are proposed. Both salience functions rely on a global threshold

to select F0 candidates. The iterative estimation method first extracts the non-harmonically

related F0s and then detects the harmonically related F0s. The candidate selection algorithms are

evaluated with respect to the efficiency and the robustness. Their advantages and disadvantages

are discussed.

In Chapter 7, an algorithm is presented for polyphony inference, which completes the pro-

posed multiple-F0 estimation system. In order to evaluate the proposed system, a systematic

method is proposed to construct a synthesized music database with verifiable ground truth. The

multiple-F0 estimation system is evaluated by two databases: one containing sources with equal

energy and the other containing sources with different energy. The results are compared and

discussed. Finally, a simple application to F0 tracking for solo recordings of monodic instruments

is presented.

In Chapter 8, the conclusions are drawn by summarizing the main contributions of this thesis.

At the end, the perspectives concerning all the algorithms developed are given for initiating

related research topics.

2



1
INTRODUCTION

The fundamental frequency, or F0, is an essential descriptor of harmonic sound signals. Single-F0

estimation algorithms assume that there is at most one periodic source. F0 estimation of single-

speaker speech signals has many applications such as speech recognition, speech transformation

and speaker identification. For the analysis of music signals, it is generally admitted that single-

F0 estimation algorithms are not adequate because musical notes played by various instruments

usually sound simultaneously. Multiple-F0 estimation algorithms assume that there could be

more than one periodic source. It is, therefore, more appropriate to analyze polyphonic signals

by a multiple-F0 estimator. For music signals, multiple-F0 estimation broadens the range of

applications to source separation, music information retrieval, and automatic music transcription.

In this thesis, music signals are understood to be generated by superimposing individual

notes of musical instruments. Accordingly, the investigation of the F0 estimation problem begins

with the survey of the physical properties of various musical instruments. The problem of single-

F0 estimation is described and single-F0 estimation algorithms are reviewed. The discussion

is then extended to the problem of multiple-F0 estimation. The complexity of the problem

is outlined with respect to four facts: overlapping partials, diverse spectral characteristics of

musical instrument sounds, transients and reverberation.

3



1.1 Fundamental Frequency (F0) of a Periodic Signal

1.1.1 Period and fundamental frequency

An event is said to be periodic if it repeats itself at a regular time interval that is called its

period. A periodic continuous time signal x̃(t) has the property that there exists a T > 0 for

which

x̃(t) = x̃(t + T ) (1.1)

for all values of t (Oppenheim et al., 1997). If there exists a T that satisfies eq. (1.1), there exist

an infinite number of T ’s. It can be derived from eq. (1.1) that

x̃(t) = x̃(t + mT0) (1.2)

for all ts and any integer m. The fundamental period T0, or simply period, is the smallest positive

value of T for which eq.(1.1) holds. The period T0 is defined by de Cheveigné and Kawahara

(2002) as “the smallest positive member of the infinite set of time shifts that leave the signal

invariant”. The fundamental frequency F0 is defined as the reciprocal of the period:

F0 =
1

T0
(1.3)

which measures the repetition rate.

Owing to the fact that the F0 of a speech or music sound source varies with time, it is usually

assumed that the signal is stationary in a very short time duration. The F0 of a non-stationary

signal can thus be determined through the approximation x̃(t) ≈ x̃(t + T0) for the concerned

duration. If a signal can be approximated in this way, it is called a quasi-periodic signal. Figure

1.2(a) illustrates an example of quasi-periodic signal with a distinct period between consecutive

sharp dips. Due to the non-stationarity, several periods may have competitive fits to the signal,

which results in the ambiguity in the determination of the F0.

1.1.2 Fourier series representation of periodic signals

Sinusoids are probably the most important periodic signals of all. A sinusoid can be represented

by a cosine function with a specific amplitude, frequency and initial phase. Jean Baptiste Joseph

Fourier was the first scholar that has the clear insight to see the potential for representing a signal

with a sum of harmonically related sinusoids. Each component is called a harmonic that has a

frequency that is a multiple of the fundamental frequency. He claimed that any periodic signal

can be represented by Fourier series, which is justified by a mathematical theorem completed

later by P.L. Dirichlet (Oppenheim et al., 1997).

A periodic signal that is real can be represented as a linear combination of harmonically

4



related complex exponentials

x̃(t) =

+∞
∑

−∞

ahejhω0t, h = 0,±1,±2, ... (1.4)

where ω0 = 2πF0 = 2π/T0. An important property of Fourier series representation is that

the sinusoidal functions form an orthonormal basis. The Fourier series coefficients can thus be

efficiently computed as follows:

ah =
1

T0

∫

T0

x̃(t)e−jhω0tdt (1.5)

eq.(1.4) is referred to as the synthesis equation and eq.(1.5) as the analysis equation. Rearrange

eq.(1.4),

x̃(t) = a0 +
+∞
∑

h=1

(ahejhω0t + a−he−jhω0t) = a0 +
+∞
∑

h=1

(ahejhω0t + a∗he−jhω0t) (1.6)

requiring a∗h = a−h, and further express ah in polar form as ah = Ah
2 ejφh , we have

x̃(t) = a0 +

+∞
∑

h=1

Ah cos(hω0t + φh) (1.7)

This is one commonly used term for the Fourier series representation of periodic signals. A

sound that can be represented by eq.(1.7) is called harmonic sound. Because the harmonics

of a quasi-periodic signal do not have frequencies that are exactly multiples of its F0, they are

often called partials. For the practical use of eq.(1.7), a finite and small number of sinusoids H

is usually used to approximate a quasi-periodic signal:

x̃(t) ≈ a0 +
H

∑

h=1

Ah cos(hω0t + φh) (1.8)

1.1.3 Physical properties of harmonic instrument sounds

In this thesis, the sounds of which the partials are nearly harmonically related are generally con-

sidered harmonic sounds. Non-harmonic sounds produced by the musical instruments like mallet

percussion instruments and bells are not the main concern in this work. There exist several

challenges when the Fourier series representation is used as the signal model to extract the F0

of a harmonic instrument sound. The approximation in eq.(1.8) does cause estimation errors,

however, this is of minor concern. The major difficulties lie in the fact that the generation of

musical instrument sounds involves complex physics, producing diverse spectral characteristics.

The interaction of a musical instrument with the room makes the resulting sound even more com-

plicated. The generation of musical instrument sounds involves four parts: excitation generator,

resonator, radiation and room acoustics (see Figure 1.1). In the following, physical properties

of harmonic instrument sounds are described for each part of sound generation (Fletcher and
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Rossing, 1998; Benade, 1976; Kuttruff, 1991).

signal

excitation

generator

resonant

body

radiation

pattern

room

acoustics

audio

Figure 1.1: Generation of musical instrument sounds.

Excitation

For musical instruments, the sources of excitation are mechanical or acoustical vibrators. This

excitation, alone or coupled with a part of the resonator, introduces a source spectrum, also

called the normal mode spectrum. The normal mode frequencies of harmonic instruments

are very nearly in integer ratios.

Woodwind instruments are made to sound by blowing an air jet across pressure-controlled

valves such as single reeds or double reeds. Brass instruments are made to sound in a similar

way but with the vibrating lips as valves. For flute-like instruments, an air jet is blown to strike

a sharp edge for the acoustical excitation.

The excitation of string instruments is generated by plucking, bowing, or striking the strings.

If a string is excited at 1/h of its length from one end, the every hth harmonic in the normal

mode spectrum is suppressed. When a string is struck by a hammer, such as the pianos, reflected

pulses return from both ends of the string and interact with moving hammer in a complicated

manner, causing the vibrating spectrum to fall off more rapidly than that of a plucked string.

The stiffness of strings makes the partials stretch toward higher frequencies. The end supports

of a string further influence the stretching partials. When a string is supported by pinned ends,

the frequency of the hth partial can be estimated by

Fh = hF0

√

1 + Bsh2 , where Bs =
π3Ed4

s

64l2sTs
(1.9)

where Bs is the inharmonicity factor, E is Young’s modulus, ds is the diameter of the string, l is

the length of the string and Ts is tension. Clamping the ends reduces slightly the stretching of

partials. For piano strings, the end support is between the pinned and the clamped but a general

use of eq.(1.9) is accepted. Compared with the treble strings that are solid wire, the piano strings

at lower registers are of less inharmonicity because they consist of a solid core wound with one

or two layers of wires. The greater mass reduces the inharmonicity. The playing techniques also

affects the inharmonicity. The inharmonicity is attenuated when the strings are bowed, but is

more noticeable when they are plucked (Pizzicato) or struck (Col Legno).

Resonance

The vibration from the excitation generator causes the resonator to vibrate with it. The result

of this coupled vibrating system is the setting-up of the regimes of oscillation. A regime
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of oscillation is the state in which the coupled vibration system maintains a steady oscillation

containing several harmonically related frequency components. The analysis of the resonances

of musical instruments is often carried out through measuring or calculating the acoustic input

impedance or the mechanical admittances.

For lip-driven brass instruments, the resonance frequencies and the corresponding amplitudes

are a combinatorial effect of the mouthpiece coupled to the horn. The horn profile determines the

resonance frequencies; the mouthpiece cup determines the amplitude envelope of local resonance

maxima. For a note to be playable, either its fundamental frequency must coincide with an

impedance maximum of the horn, or at least one of its low harmonics must coincide with such

a resonance. In a normal situation, the fundamental frequency and several of its harmonics lie

close in frequency to prominent horn resonances. If a particular harmonic does not lie close to

an impedance maximum, the resulting oscillation amplitude is very small. Within the small-

amplitude nonlinear approximation, the amplitude of the hth harmonic in general approximates

the hth power of that of the fundamental. At a high playing level, the upper harmonics become

more significant as their amplitudes relative to the fundamental increase.

Woodwind instruments have the common characteristic of changing the fundamental fre-

quency of the note being played by opening one or more finger holes, thus changing the acoustic

length of the air column. The impedance curves of lower registers are different from those of

higher registers. For the clarinets, the resonance peaks of lower register notes coincide with an

odd harmonic series and only the first few harmonics are well aligned with the impedance max-

ima. For higher register notes, the first impedance maxima might be lower than the frequency of

the first harmonic. The similar characteristics are found also in the oboe but the resonance peaks

of the oboe form a nearly harmonic series. Due to the leakage of high-frequency sound through

the open tone holes, the strength of resonance gradually decreases from a cutoff frequency.

For flute-like instruments, the major cause of nonlinearity arises from the shape of the velocity

profile of the air jet, which leads to considerable harmonic development in the tone emitted by

a resonator. The pipe resonators of simple flute-like instruments like panpipes are stopped at

their lower ends. Their resonance frequencies thus follow an approximately odd-harmonic series

like those of the clarinets.

The body resonance of bowed string instruments shapes the spectrum of vibrating strings,

providing cues to identify complex tones of string instruments. The bridge transforms the motion

of the vibrating strings into periodic driving forces applied by its two feet to the top plate of the

instrument. For bowed string instruments, the normal modes of vibration are mainly determined

by the coupled motions of the top plate, back plate and enclosed air. The three consistent modes

of resonance are: air modes, top modes and body modes. The resonance frequencies of the three

modes vary from instrument to instrument.

Radiation

In the coupled system of excitation generator and resonator, the sound waves traveling in the

instrument bodies build up a variety of normal modes. They are then radiated by the instrument
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bodies in different ways to reach our ears. The research of instrument radiation is based on the

study of the simplest types of sources: monopoles, dipoles and multiple point sources. The radi-

ation of instrument bodies can therefore be approximated by a combination of simple vibrating

sources. For example, the radiation from the open finger holes of a woodwind instrument or the

piano soundboards can be seen as an array of point sources. The components of sounds with

different frequencies radiate with different efficiencies, resulting in various directivity patterns.

In general, the sound radiation becomes more directional at higher frequencies. The low-

frequency partials of brass instruments spread uniformly around the bell in all directions, whereas

the high-frequency partials form a more progressively directed beam out along the axis of the

horn.

Although the resonance curve of woodwind instruments are progressively weaker for the

higher partials, their greater efficiency for high-frequency radiation compensates the energy of

higher partials. The even-number partials of a clarinet tone are radiated more strongly than are

the odd-number partials, which compensates the weak resonance at the odd-number harmonics.

The directivity patterns of bowed strings have been observed by Meyer (1972), based on

whose suggestions seating arrangements of bowed strings in a concert hall were made. The

directivity patterns of the violins, for example, change dramatically with frequencies, which

results in the illusion that different notes come from different directions. This has been described

as the “directional tone color” (Weinreich, 1997) and considered important consequences for the

perception of vibratos and solo violins in concertos.

Room acoustics

In an enclosed space, certain frequency ranges might be reinforced by the modes of the room.

The frequencies of the free undamped vibrations of a rectangular volume of air bounded by

reflective surfaces can be expressed by the following equation (Rayleigh, 1945)

fr =
c

2

√

n2
x

L2
x

+
n2

y

L2
y

+
n2

z

L2
z

(1.10)

where c is the speed of the sound, Lx, Ly and Lz are the dimensions of the rectangular room

and nx, ny and nz determine the vibrating modes: axial mode (two surfaces), tangential mode

(four surfaces) and oblique mode (six surfaces).

When a sound source produces sounds in an enclosed space, the direct sound is followed by

early reflected sounds and later, by a collection of dense reflections called reverberation. The

behavior of room modes and reverberation is characterized by Schroeder frequency (Kuttruff,

1991):

fs ≈ 2000

√

TR

V
(1.11)

where TR is the reverberation time and V is the volume of the enclosed space. When fr is be-

low the Schroeder frequency, the discrete room modes are important characteristics of the room
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acoustics. Above the Schroeder frequency, reverberation is in fact a consequence of the overlap-

ping of simultaneously excited room modes that are no longer individually distinguishable (Jot

et al., 1997). Compared to the relatively deterministic nature of early reflections, reverberation

can be seen as a stochastic process.

1.1.4 Fundamental frequency and pitch

The partials of a harmonic instrument sound evokes the perception of a pitch that is closely

related to the fundamental frequency. A simple description of the process of pitch perception can

be stated as: the inner ear (cochlea) converts a vibration pattern in time (that of the eardrum)

into a vibration pattern in space (along the basilar membrane) and, in turn, into a spatial

pattern of neural activity which can be interpreted by human brain as a pitch. The American

National Standard Institute (ANSI) defines pitch as “that auditory attribute of sound according

to which sounds can be ordered on a scale extending from low to high”. The French standards

organization (Association Française de Normalisation, AFNOR) defines: “pitch is associated with

frequency and is low or high according to whether this frequency is smaller or greater”. Both

verbal definitions are rather abstract. An operational definition is given in (Hartmann, 1998):

“sound has certain pitch if it can be reliably matched by adjusting the frequency of a sine wave

of arbitrary amplitude”.

The theories of auditory pitch analysis tend to differ in two dimensions (Bregman, 1990):

whether they see pitch analysis as based primarily on place information – spectral pitch or

on periodicity information – periodicity pitch, and what method is used to derive the pitch

from the type of information that is used. The human auditory system seems to perceive a pitch

through pattern matching. We recognize a sound by its spectral pattern composed of a series of

partials that characterize it. Even when some partials are too weak to be detected, the human

auditory system tends to reconstruct the missing partials and complete the pattern matching

task.

Although it is widely accepted that the term pitch estimation is equivalent to F0 estima-

tion, the latter is used in this thesis for the reason that the goal of this work is not to extract

what is perceived as a pitch but to extract the F0 as a parameter of the signal model.

1.2 Single-F0 Estimation

Single-F0 estimation algorithms assume that there is at most one harmonic source in the observed

short-time signal. Without loss of generality, the observed signal can be expressed as a sum of a

quasi-periodic part x̃(t) and the residual z(t):

x(t) = x̃(t) + z(t)

≈
H

∑

h=1

Ah cos(hω0t + φh) + z(t)
(1.12)
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where eq.(1.8) is used for the approximation. The single-F0 estimation problem is to extract

the period or the fundamental frequency of x̃(t). Notice that the goal is not to minimize the

residual z(t), but to extract the quasi-periodic part x̃(t) with high periodicity/harmonicity. The

common errors made are subharmonic errors and super-harmonic errors, both of whose

estimated F0s are harmonically related to the correct F0. Subharmonic errors correspond to F0s

that are unit fractions of the correct F0 and super-harmonic errors correspond to those which

are multiples of the correct F0.

The mathematical formulation for the problem of single-F0 estimation depends on the way

the periodicity in x̃(t) is extracted. Single-F0 estimation algorithms are often categorized into

two groups: the time domain approach and the spectral domain approach. Most algorithms

do not use an explicit source model as expressed in the approximation of eq.(1.12), but rather

attempt to extract directly the periodicity in either the time domain or the spectral domain.

1.2.1 Time domain approach

By the definition of periodic signals as eq.(1.1), time domain methods look for a similar repetitive

waveform in x(t) through pattern matching between x(t) and the delayed x(t). Pattern matching

in time domain can be carried out through multiplication or subtraction between patterns.

Autocorrelation

Multiplication between patterns measures their correlations. Autocorrelation function calculates

the sum of the product between a signal x(t) of finite duration L and its delayed version x(t+ τ)

for each lag τ in search:

ACF(τ) =
1

L

L−τ−1
∑

t=0

x(t)x(t + τ) (1.13)

For a quasi-periodic signal, large correlation occurs when τ equals the period or multiples of the

period. Autocorrelation method selects the highest non-zero-lag peak as the estimated period.

However, this simple selection technique is sensitive to formant structures in speech signals and

the resonance structure in music signals. To attenuate the effect of the formant or the resonance,

special treatments like center clipping, spectral flattening and nonlinear distortion were suggested

by various researchers (Hess, 1983).

Magnitude difference

The Average Magnitude Difference Function (Ross et al., 1974) compares the dissimilarity of x(t)

and x(t + τ) by the distance of the two patterns:

AMDF(τ) =
1

L

L−τ−1
∑

t=0

|x(t)− x(t + τ)| (1.14)
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For quasi-periodic signals, regular dominant dips can be observed when τ equals one period or

multiples of the periods. The deepest non-zero-lag dip is selected as the estimated period. A

similar approach is to measure the dissimilarity by the squared distance:

SDF(τ) =
1

L

L−τ−1
∑

t=0

(x(t)− x(t + τ))2 (1.15)

Squared Difference Function (SDF) is adapted for the algorithm YIN by normalizing SDF

with its average over shorter-lag values (de Cheveigné and Kawahara, 2002). This is called the

cumulative mean normalized difference function. It removes the dips at lags near zero

and thus avoids super-harmonic errors. YIN has been shown to outperform several conventional

methods for speech signals (de Cheveigné and Kawahara, 2001). The difference function can be

generalized into any power of the distance measure and it has been investigated that a power

larger than one is appropriate for weakly stationary signals. A power of two seems to be a good

choice (Nguyen and Imai, 1977).

Both AMDF and SDF are related to the autocorrelation function. These methods are phase-

insensitive since partials are subtracted regardless of their phases. However, they are sensitive

to intensity variations, noise and low-frequency spurious signals (Hess, 1983).

Figure 1.2 shows three time-domain functions for a baritone sax signal with F0 = 237Hz

(T0 = 4.2ms). Despite the different ways to measure the similarity between a short-time signal

and its delayed versions, the common problem is the ambiguity in selecting the best period since

all multiples of the period, i. e., subharmonics, are competitive candidates.
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time (msec)
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waveform

ACF
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SDF

Figure 1.2: Three time-domain salience functions for a baritone sax signal of T0 = 4.2ms: (a)
signal waveform; (b) autocorrelation function; (c) average magnitude difference function; and
(d) squared difference function.
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1.2.2 Spectral domain approach

F0 estimation in the spectral domain extracts periodicity from the spectral representation based

on Fourier Transform. The spectrum of a harmonic sound has dominant peaks at nearly equal

spacing (see Figure 1.3(a)). Spectral domain approaches either (1) measure the regular spacing of

dominant peaks as F0 or (2) formulate the salience of F0 as a function of hypothetical partials.

From this point of view, fundamental frequency can also be defined as the greatest common

divisor of the frequencies of all the harmonics.

Cepstrum

If there is periodicity of “ripples” formed by sinusoidal peaks in the spectrum, it is reasonable to

apply again the Fourier analysis on the observed spectrum to analyzing the underlying periodicity.

The real cepstrum of a signal is the inverse Fourier transform of the logarithm of its power

spectrum. Schroeder proposed cepstrum for F0 estimation in 1962 based on the first cepstral

analysis paper on seismic signals. A complete methodology was given later by Noll (Noll, 1967).

The lower-quefrency components in the cepstrum provide the spectral envelope information

and the components as sharp cepstral peaks correspond to period candidates.

Spectral autocorrelation

As autocorrelation function searches for repetitive patterns in the time domain, it can also

be applied to the spectral domain (Lahat et al., 1987). The periodicity search is attained by

pattern matching between the spectrum and its shifted versions. When the shift is not equal to

F0 or multiples of F0, the product between the spectrum and the shifted spectrum is attenuated

because partial peaks are not well aligned. The shift equal to F0 should result in the maximal

spectral autocorrelation coefficient.

Spectral compression

To infer the F0 from higher harmonics that are observed as spectral peaks, Schroeder proposed

to sum the frequency-warped spectra, i. e., spectra compressed by different integer factors on the

frequency axis. The Schroeder histogram counts equally the contribution of each spectral

peak to the related F0s that are common divisors of its frequency, which is not robust against

noise and spurious peaks in the spectrum. He proposed further to weight the spectral compo-

nents according to their amplitudes (Schroeder, 1968): harmonic product spectrum uses the

log power spectrum 1 and harmonic sum spectrum uses the linear spectrum 2. Summing

compressed spectra focuses the energy of higher partials on distinct peaks, and the maximal

peak determines the related F0.

1Harmonic product spectrum requires to take the exponential of the summary spectrum.
2The linear amplitude can be exponentially compressed beforehand.
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Harmonic matching

This technique often makes use of harmonic spectral patterns to match the observed spectrum,

either by a specific spectral model or by a harmonic comb without specifying the amplitudes of

the harmonics. Specific spectral models are more often used for polyphonic signals and will be

discussed later. A harmonic comb is a series of spectral pulses with equal spacing defined by an

F0 hypothesis. The degree of match for an F0 hypothesis can be evaluated by the correlation

between the harmonic comb and the observed spectrum (Martin, 1982; Brown, 1992), or by the

minimization of the distance between the frequencies of the harmonics and the frequencies of

the matched peaks (Goldstein, 1973; Duifhuis and Willems, 1982). To improve the robustness

of harmonic matching, several factors have been studied: the number of harmonics (Goldstein,

1973), the quality of the peaks (Sluyter et al., 1982), the tolerance interval (Sreenivas and Rao,

1981), the presence of harmonics (Doval and Rodet, 1991), etc.

Spectral peak inter-spacing

As long as the partials are well separated in the spectrum, F0 can be estimated by measuring the

regular spacing between each pair of partials (Harris, 1963). Each F0 hypothesis is supported by

a group of spectral peaks that have frequency spacing close to the F0 hypothesis. The hypothesis

of the best support is selected as the estimated F0. The measure of support is usually related to

energy and harmonicity.

Using the baritone sax signal demonstrated in Section 1.2.1, the salience functions of the spectral

domain methods are tested and shown in Figure 1.3. The cepstrum method 1 is based on the

logarithm of the power spectrum, whereas the others are based on the linear magnitude spec-

trum. The harmonic matching salience function (see Section 5.1.1) uses a harmonic comb of 15

harmonics. The spectral peak inter-spacing function groups the peaks that are of similar spectral

intervals, with a constraint on reasonable harmonic locations (see Section 6.1.2 and Appendix

E). All the salience functions have their maxima close to the correct F0 except those of the

cepstrum method.

1.3 Multiple-F0 Estimation

Multiple-F0 estimation algorithms assume that there can be more than one harmonic source in

the observed short-time signal. In general, the observed signal can be expressed as a sum of

harmonic sources plus the residual. Using the Fourier series, this model can be represented as

1The exponential operation is skipped to show how the harmonics compete with one another.
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Figure 1.3: Five salience functions of the spectral domain approach tested using a baritone sax
signal of F0 = 237Hz. (a) signal spectrum; (b) cepstrum; (c) spectral autocorrelation; (d)
harmonic sum spectrum; (e) harmonic matching; and (f) peak inter-spacing.

follows:

x(t) = x̃(t) + z(t)

=
M
∑

m=1

x̃m(t) + z(t), M > 0 with x̃m(t) = x̃m(t + Tm)

=

M
∑

m=1

{

am +

+∞
∑

h=1

Am,h cos(hωmt + φm,h)
}

+ z(t)

≈
M
∑

m=1

Hm
∑

h=1

Am,h cos(hωmt + φm,h) + z̄(t)

(1.16)

where Hm is the number of harmonics, and M is the number of harmonic sources. The

approximation for the periodic source uses the expression of eq.(1.8), and the substitution

z̄(t) = z(t) +
∑M

m=1 am is used for the ease of representation. The problem of multiple-F0 esti-

mation is to infer the number of sources and estimate the related F0s. The residual z(t) comes

from the components that are not explained by the sinusoids, for instance, the background noise,

the spurious components or the inharmonic partials.
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1.3.1 Problem Complexity

The complexity of polyphonic music signals can be demonstrated by comparing the spectrogram

of a polyphonic music recording with that of a monophonic music recording (see Figure 1.4). The

difficulties of extracting multiple F0s from a music recording lie in the handling of overlapping

partials, transients, and reverberation, as well as the modeling of musical instrument sounds with

diverse spectral characteristics.
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Figure 1.4: Comparison of the spectrogram of a monophonic signal with that of a polyphonic
signal: (a) a trumpet note sample; (b) a piano and violin duo recording.

Overlapping partials

For polyphonic signals, different sources may interfere with one another in a way that their

components overlap in time as well as in frequency. The frequencies, amplitudes and phases

of the overlapping partials of harmonic sources are thus disturbed. For equal temperament,

the fundamental frequencies of most musical notes are harmonically related, which results in a

high probability of partial overlapping in polyphonic music signals (Klapuri, 1998). When the

fundamental frequencies of two notes form integer ratios, for example, an octave relation, the

partials of the higher note may overlap completely with those of the lower note.

Since the simultaneously sounding notes are usually unknown, it is very difficult to locate the

overlapping partials. Parsons tried to detect overlapping partials with three tests: the symmetry

of a spectral peak, the distance between adjacent peaks, and the well-behaved phase (Parsons,

1976). This technique relies on the sinusoidality of stationary sinusoids and is not suitable

for modulated sinusoids. Moreover, the maximal number of concurrent sources is limited to

two, which is not practical for the general case. Even if the number of concurrent sources is

known beforehand, it still remains a challenge to decompose the overlapping partials into their

original sources (Viste and Evangelista, 2002; Virtanen, 2003a; Every and Szymanski, 2004).

Although the precise reallocation of the overlapping partials may not be required for multiple-F0

estimation, partial overlapping is an important issue to be addressed to achieve robust estimation
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of F0s.

Diverse spectral characteristics

Music signals are mixtures of musical notes played by various instruments. The diverse spectral

characteristics of musical instrument sounds add a great complexity to the problem of multiple-

F0 estimation. Based on the description of instrument sound generation in Section 1.1.3, the

spectral characteristics of harmonic instrument sounds are summarized in the following.

1. Spectral envelopes: The spectral envelope of a harmonic signal denotes a contour that

passes through the prominent spectral peaks which are generally the partials. Many musical

instruments produce sounds with smooth spectral envelopes 1 but differ immensely in their

shapes (see Figure 1.5). Relatively weak fundamentals are often observed in the lower

registers of some instruments like pianos, bassoons, oboes and guitars, resulting in not-so-

smooth spectral envelops. The spectrum of a clarinet sound has attenuated even harmonics,

of which the spectral envelope is not smooth, either. The spectra of musical instrument

sounds also evolve with time in a way that partials decay at different rates. According to

previous studies on the modeling of the spectral envelopes of a musical instrument sound,

there exists no universal model that generalizes different registers and various playing

techniques (Jensen, 1999; Loureiro et al., 2004; Burred et al., 2006).

2. Inharmonic partials: Inharmonic partials are often observed in the string instrument

sounds. The displaced partials deviate from their expected frequency positions of a har-

monic model. If a harmonic model allows certain inharmonicity, the model harmonics may

match the partials of different sources. If it does not allow inharmonicity, more sources

may be needed to explain the stretched partials.

3. Spurious components: For some instruments, there are some dominant components

excited along with the partials. Phantom partials are observed in the string instrument

sounds (Harold A. Conklin, 1999), which seems to be related to the tension variation in

the strings. The phantom partials appear close to the frequencies of the normal partials.

For the bowed string instruments, when the three resonance modes (air mode, top mode

and body mode) fall between the partials, spurious components can be boosted by the

resonance. These spurious components are often observed in plucked string sounds and are

sometimes rather dominant compared to the partials.

Transient

The term transient does not have a precise definition and it is often defined by the analysis

approaches (Daudet, 2006). The transients can be simply stated as the zones of short duration

with fast variation of the sound signals (Rodet and Jaillet, 2001). The transients of music signals

could appear at note onsets as fast attacks, or at note offsets as fast releases. The fundamental

1When the envelope is observed in the power spectrum under the logarithmic scale.
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(a) trumpet (b) piano (c) clarinet

(d) bassoon (e) bowed cello (f) pizzicato cello

Figure 1.5: The spectra of six musical instrument sounds: (a) trumpet A3 note; (b) piano A1
note; (c) clarinet A3 note; (d) bassoon A3 note; (e) bowed cello A3 note; and (f) pizzicato cello
A3 note.

frequency within the transient state poses an ill-defined problem due to its highly non-stationary

nature. For bowed instruments or woodwind instruments, for example, the attack transient state

might excite subharmonics (McIntyre et al., 1983).

The transient of a source often appear to be impulsive and accompanied with high energy,

which introduces many spurious components that may interfere with other sound sources. Recent

research tends to treat the transient as a specific signal component. The transient is detected by

either a non-parametric approach (Rodet and Jaillet, 2001; Röbel, 2003b; Bello et al., 2005), or

a parametric approach (Daudet, 2004; Molla and Torrésani, 2004).

Reverberation

Reverberation plays an important role in a music recording. A music recording in an auditorium

usually requires a balance of the instrument characteristics and the room acoustics. A pair of

main microphones is usually placed at the “sweet spot” to capture the whole picture of the sound

scene. The recorded signal is thus a mixture of direct sounds, reflected sounds and reverberated

sounds. Reverberation prolongs preceding sounds such that they overlap with the following

sounds. When the recording of a monodic instrument is carried out in a reverberant environment,

the recorded signal can be polyphonic (Beauchamp et al., 1993; Baskind and de Cheveigné, 2003;

Yeh et al., 2006). The reverberated parts are quite non-stationary, which increases the complexity

of the analysis of the signal.

1.3.2 Discussions

The problem of multiple-F0 estimation is far more complicated than the problem of single-F0

estimation. There are three fundamental model assumptions involved in the problem of multiple-

F0 estimation: the noise model (z(t)), the source model (x̃m(t)) and the source interaction
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model (the effect of
∑M

m=1 x̃m(t)). When the maximal number of sources is limited to one

0 ≤ M ≤ 1, the porblem becomes single-F0 estimation. There is no source interaction involved

in the problem of single-F0 estimation, and the inference of M becomes a voiced/unvoiced

determination problem (Hess, 1983).

It is generally admitted that single-F0 estimation algorithms are not appropriate to solve

the problem of multiple-F0 estimation. A naive test is to apply single-F0 estimation algorithms

to a polyphonic signal and then to verify if the periodicity saliences around the correct F0s are

dominant and distinct. A polyphonic signal containing four notes is tested by three time domain

methods (see Figure 1.6) and five frequency domain methods (see Figure 1.7). As shown in Figure

1.6(a), the repetitive pattern in the waveform is not as clear as that of the monophonic signal

shown in Figure 1.2(a). In consequence, the autocorrelation and amplitude difference functions do

not show distinct peaks (or valleys) around the correct F0s. For the frequency domain methods,

dominant periodicity saliences are found at the correct F0s, their subharmonics and their super-

harmonics. When the energy of a source is relatively strong, the salience of its subharmonic or

its super-harmonics can compete with that of a source of weaker energy. Although single-F0

estimation algorithms have limitations in analyzing polyphonic signals, they can be useful to

extract F0 candidates in multiple-F0 estimation.

Another difficult problem of multiple-F0 estimation is the estimation of the number of sources.

The complexity of polyphonic signals causes not only the octave ambiguity but also the am-

biguity in the estimation of the number of sources. Common subharmonics have the support

from the partials of concurrent sources and compete with the correct F0s. When the common

subharmonic of some of the correct F0s is estimated instead, the number of sources is underesti-

mated ; when a source is explained by a combination of several hypothetical sources, the number

of sources is overestimated. Moreover, spurious components and reverberation together disturb

the periodic part of the sound signal, making it more difficult to achieve a robust estimation of

the number of sources.
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Figure 1.6: Three time-domain salience functions for a polyphonic signal containing four har-
monic sources. The correct periods are marked by vertical dash lines.
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Figure 1.7: Five frequency-domain salience functions for a polyphonic signal containing four
harmonic sources. The correct fundamental frequencies are marked by vertical dash lines.
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2
STATE OF THE ART

In this chapter, previous studies of multiple-F0 estimation are reviewed. The related studies

of, for instance, automatic music transcription and source separation are included in the review

because F0s are extracted along these processes. The research of multiple-F0 estimation was

initiated by the studies on separating co-channel speech signals, especially for two-speaker signals

(Shields, 1970). Since then the research of multiple-F0 estimation has been extended to automatic

music transcription for polyphonic music signals. Moorer (1977) started by analyzing duets

and later researchers have continued to develop multiple-F0 estimation algorithms for higher

polyphony. The existing methods for multiple-F0 estimation can be categorized into two groups:

the iterative estimation approach and the joint estimation approach.

This categorization is different from the time/frequency domain categorization that is gener-

ally used for single-F0 estimation algorithms. The reason is that the main concern of multiple-F0

estimation is the complexity of the problem, and there exists a compromise between the efficiency

and the robustness of a proposed algorithm. Theoretically, joint estimation should handle the

source interaction better than iterative estimation. However, the downside is the computational

cost. On the other hand, iterative estimation has the advantage of higher efficiency but is less

optimal in the handling of the source interaction. Therefore, it is believed that the iterative/joint

estimation categorization is more appropriate to characterize the existing methods for multiple-

F0 estimation.
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2.1 Iterative Estimation

The iterative approach iterates predominant-F0 estimation and the cancellation/suppression of

the related sources until the termination requirement is met. Iterative estimation assumes that

at each iteration there always exists a dominant source with distinct harmonic energy such that

the extraction of one single F0 is reliable even when the remaining partials are fragmentary.

2.1.1 Direct cancellation

Direct cancellation applies a single-F0 estimation algorithm to extract the predominant-F0 and

then eliminates all harmonics of the extracted source from the observed signal. This approach

assumes that a complete removal of the dominant source does not influence the subsequent esti-

mation. “Direct” cancellation here means that the source interaction such as overlapping partials

is not taken care of. Parsons (1976) used Schroeder’s histogram to extract the predominant

F0s in a two-speaker separation problem. Once the first F0 is estimated, the spectral peaks

corresponding to its harmonics are excluded before the calculation of the next histogram. The

method of Lea (1992) iteratively extracts the predominant peak in the SACF as an F0 and can-

cels the estimate in the ACF array. de Cheveigné (1993) proposed a time-domain cancellation

model and both joint cancellation and iterative cancellation are studied. The iterative cancella-

tion algorithm estimates the predominant F0 by AMDF and cancels it by comb filtering. Direct

cancellation is also applied in the spectral domain. Ortiz-Berenguer et al. (2005) uses spectral

patterns trained from piano sounds to perform harmonic matching. Predominant sources are

cancelled iteratively by means of binary masks around the matched harmonics in the observed

spectrum.

2.1.2 Cancellation by spectral models

Klapuri (2003) presented an iterative estimation algorithm based on two guiding principles: har-

monicity and spectral smoothness. The input signal is preprocessed by a RASTA-like technique

(Hermansky and Morgan, 1994) on a logarithmic frequency scale such that the spectral magni-

tudes are compressed and the additive noise is removed. Predominant-F0 estimation is based

on summing the spectral ACF of the preprocessed spectrum across subbands. It is pointed out

that the signal may become too corrupted after several iterations of direct cancellation. The

predominant source is thus smoothed before being subtracted from the spectrum. In this way,

the overlapping partials still retain energy for the remaining sources. The method, called the

bandwise smooth model, uses the average amplitude within one octave band to smooth out

the envelope of an extracted source.

A perceptually motivated multiple-F0 estimation method was later presented by Klapuri

(2005). Subband signals are first compressed and half-wave rectified. Harmonic matching is then

performed on the summary magnitude spectrum to extract the predominant F0. A 1/k smooth

model 1 is used to attenuate the predominant source such that the energy of higher partials is

1Partial amplitudes are inversely proportional to the partial index.
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retained for the next iteration. Klapuri (2006) also proposed a spectral model which attempts

to generalize a variety of musical instrument sounds. This model is found to be similar to the

1/k smooth model.

Bach and Jordan (2005) formulated the multiple-F0 estimation problem under a graphical

model framework (Jordan, 2004). The spectral model is trained from speech database as a spline

smoothing model and the predominant F0 is obtained by maximizing the likelihood. Pitch

tracking is modeled as a factorial HMM. The algorithm iterates predominant-F0 tracking and

subtraction till the designated number of F0s is achieved.

2.2 Joint Estimation

Contrary to the iterative estimation approach, joint estimation evaluates possible combinations

of multiple F0 hypotheses without any cancellation involved. Although the observed signal is

not corrupted as that in an iterative estimation-cancellation process, the handling of overlapping

partials remains a challenge.

2.2.1 Joint cancellation

A joint cancellation method was proposed by de Cheveigné (1993). This method uses the dou-

ble difference function (DDF) that jointly cancels multiple-F0 hypotheses. The hypothetical

combination producing the smallest residual is considered the final estimate. The continuous

studies show that joint cancellation performs better than iterative cancellation because a single-

F0 estimation failure will lead to successive errors in an iterative manner (de Cheveigne and

Kawahara, 1999). However, joint cancellation is computationally more demanding than iterative

cancellation. Maher and Beauchamp (1994) proposed a two-way mismatch method to estimate

two F0s jointly. The algorithm searches for the pair of F0s that minimize the frequency dis-

crepancies between the harmonic models and the observed peaks, i. e., the mismatch from the

predicted to the measured and the mismatch from the measured to the predicted. Each match

is weighted by the amplitudes of the observed peaks. In this way, the algorithm minimizes the

residual by the best match.

2.2.2 Polyphonic salience function

Polyphonic salience functions aim at enhancing the salience of the underlying F0s to facilitate

a later peak-picking or tracking. Many salience functions follow the pitch perception model of

Licklider (1951), which suggests an autocorrelation process after cochlear filtering. This auditory

model leads to the channel-lag representation of ACF in the auditory channels (Lyon, 1984).

This representation is called correlogram (Slaney and Lyon, 1990). Weintraub (1986) applied

dynamic programming algorithms to correlogram and iteratively tracked the F0s of two speakers.

Wu et al. (2003) followed the similar approach and applied channel selection along with channel

peak selection before summing the normalized ACF across channels. Multiple F0s are then

tracked for two speakers under a hidden Markov model scheme. Karjalainen and Tolonen (2000)
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proposed to process a two-channel SACF with special techniques such that peaks corresponding

to harmonics and subharmonics are suppressed. The resulting function is called enhanced

summary autocorrelation function (ESACF).

The combination of several single-F0 estimation functions also yields a polyphonic salience

function. Min et al. (1988) combined ACF with AMDF as the salience function, followed by a

simple tracking technique. Peeters (2006) demonstrated that the combination of spectral ACF

with cepstrum provides a useful polyphonic salience function for multiple-F0 estimation. Zhou

(2006) presented a method to extract the power spectrum above the noise floor, called resonator

time-frequency image (RTFI), from which relative pitch energy spectrum is derived for

the selection of F0 candidates.

2.2.3 Spectral matching by non-parametric models

Static models are based on the assumption that the spectral pattern of a fixed harmonic structure

is representative of one source even for its variants that evolve with time.

Non-negative matrix factorization

Considering the decomposition of the observed power spectra Y with the spectral templates H:

Y = WH (2.1)

where W is the weighting matrix. Smaragdis and Brown (2003) used Non-negative Matrix

Factorization (NMF) to decompose the spectrogram into spectral models (basis functions in

H) of each note with its intensity change along time (weightings in W). Since the components of

Y are non-negative by nature, NMF approximates it as a product of two non-negative matrices

H and W. The cost function is designed to favor the minimization of the residual with specific

constraints like sparseness (Cont, 2006) or harmonicity (Raczynski et al., 2007). Although fast

algorithms have been proposed for multiple-F0 estimation (Sha and Saul, 2005; Cont, 2006), the

challenge remains in the modeling of the time-varying spectra of sound sources (Virtanen, 2003b;

Abdallah and Plumbley, 2004).

Specmurt

Sagayama et al. (2004) understands the spectrum as a convolution of a common harmonic struc-

ture with pulses at multiple fundamental frequencies. The observed signal is first analyzed by

a constant-Q like transform to fit the nature of energy distribution on the log-frequency scale.

Spectral representation on log-frequency scale facilitates the spectral deconvolution because the

common harmonic pattern can be linearly shifted and summed to match the observed spectrum.

The log-frequency spectrum and the common harmonic pattern are both transformed (by inverse

Fourier transform) into the specmurt domain 1 in which deconvolution of the spectrum can be

simply achieved by division.

1Specmurt is defined as the inverse Fourier transform of linear spectrum with logarithmic frequency.
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2.2.4 Statistical modelling using parametric models

The statistical approach formulates the problem within a Bayesian framework. Bayesian statis-

tical methods provide a complete paradigm for both statistical inference and decision making

under uncertainty. Waveform models adaptively match the observed compound waveform in

the time domain. Walmsley et al. (1999) employs specific prior distributions for the existence of

each sources, the fundamental frequencies, the number of partials, the partial amplitudes and the

residual variance. These parameters are estimated jointly across a number of adjacent frames

by means of the Markov chain Monte Carlo (MCMC) method. Davy and Godsill (2003)

extended this method by introducing a prior distribution on the inharmonicity factor. In the

generative music signal model proposed by Cemgil et al. (2006), a higher-level parameter related

to tempo was further introduced with several modifications.

Spectral models adaptively match the observed signal in the frequency domain and the phase

information is often disregarded. Goto (2000) regards the observed spectrum as a weighted sum

of harmonic-structure tone models. The signal parameters are estimated through the EM algo-

rithm. Following the same concept, Kameoka et al. (2005a) formulates the multiple-F0 estimation

problem as a time-space clustering of harmonic sounds, which is named harmonic temporal

structured clustering (HTC) method. HTC method models the fundamental frequency, the

relative partial amplitudes, the intensity, the onset and the duration, etc., of each underlying

source. All the parameters are optimized by the EM algorithm (Kameoka et al., 2005b) such

that the superimposed HTC models approximate the observed spectrogram the best. Partials

of a harmonic source are modeled as Gaussian distributions with initial spectral envelopes. The

evolution of partial amplitudes are modeled by Gaussian mixtures across frames such that the

synchronous evolution is constrained and the duration is adaptively modeled. Vincent (2004)

models the spectra of musical instrument sounds by means of the means and the variances of

partial amplitudes, partial frequencies and residuals. The observed spectrum can thus be in-

terpreted as a sum of the spectral models with the related weighting optimized by Newton’s

method. A factorial model is applied to constraining the temporal continuity and to adapting

the duration.

2.2.5 Blackboard system

A blackboard system integrates various forms of knowledge or information for solving com-

plicated problems. In general, a blackboard system for Auditory Scene Analysis consists

of a three-level process: low-level signal processing, mid-level grouping, and high-level stream

forming. Low-level processing extracts signal components such as spectral peaks, transients (on-

sets/offsets), amplitude modulation and frequency modulation. Mid-level grouping interprets

the signal components as features for fusion or segregation. Signal components with harmonic

relation, common onsets or amplitude modulations, etc., can be clustered in one group. These

grouping cues are based on the psychological findings of human perception of auditory scenes

(Bregman, 1990). This approach has been widely accepted for automatic music transcription of

note pitches (Chafe and Jaffe, 1986; Mellinger, 1991; Kashino and Tanaka, 1993; Martin, 1996;
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Fernandez-Cid and Casajus-Quiros, 1998; Kashino et al., 1998; Sterian, 1999; Dixon, 2000; Bau-

mann, 2001; Chien and Jeng, 2002) in which F0s are low-level representation of note pitches.

Higher level stream forming can incorporate prior knowledge about instrument models and music

styles (the key, the scale, the tempo, etc.) to segregate objects in the same group or to eliminate

less plausible groups.

2.3 On Estimating the Number of Sources

The estimation of the number of harmonic sources, called polyphony inference, is one of

the most difficult problem for multiple-F0 estimation. Some existing methods assume that the

number of sources is known. There exist few studies of polyphony inference, most of which usually

rely on the threshold on a specific criterion. These criteria are summarized in the following.

1. Minimal residual

On the assumption that the noise part is relatively low in energy compared to the periodic

part, it is reasonable to minimize the residual by maximizing the energy explained by the

signal model (Klapuri, 2005). The main concern is the spectral diversity of musical instru-

ment sounds which often differ from the harmonic model. According to the description in

Section 1.3.1, inharmonic partials and spurious components can not be perfectly modeled.

When the energy of these components is larger than the allowed threshold on the residual,

they are extracted as additional sources.

2. Minimal source energy

To avoid the over-estimation of polyphony, a constraint on the energy of the extracted

sources could be set to limit spurious detections. For a blackboard system, it is often

practical to use a threshold in the segregated audio streams to prune spurious sources.

However, the minimal source energy varies for signals under different SNR conditions and

an adaptive threshold is needed (Kameoka et al., 2005b).

3. Information criterion

For the statistical modeling approach, there exist several information criteria such as AIC

(Akaike Information Criterion) or BIC (Bayesian Information Criterion) to estimate the

model order. In the context of multiple-F0 estimation, the model order is related to the

number of sources. Information criteria usually combine the modeling error term with a

penalty term (Hayes, 1996). The minimum of information criterion should represent a good

balance of low model errors and the low model order. Several model orders might have

to be assessed before the minimum of the information criterion can be located (Kameoka

et al., 2004).

4. Salience improvement

Similar to the concept of information criterion, one can observe the salience improvements

while the polyphony hypothesis is increased (Klapuri, 2006; de Cheveigné and Baskind,

2003). Adding a correct source should improve the salience more significantly than adding
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an incorrect one. Compared with the information criterion, this approach, although heuris-

tic in its nature, is more flexible for the integration of various information to validate the

hypotheses.

5. Temporal modeling

Temporal modeling integrates the observed F0 hypotheses into a statistical framework to

build up continuous F0 trajectories. It is helpful for a frame-based F0 estimator to correct

the errors when the estimated F0 changes abruptly. Wu et al. (2003) proposed to track

multiple F0s within a hidden Markov model (HMM) in which the number of sources is

modeled as discrete states. Transition probability between states are learned from training

databases and the optimal sequence of successive states is searched by Viterbi algorithm.

Ryynänen and Klapuri (2005) presented a more sophisticated algorithm which applies a

note event HMM, a silence model and a musicological model to the tracking of multiple

F0s.

2.4 Discussions

2.4.1 Signal representation

Most multiple-F0 estimation algorithms involve the analyses in the spectral domain. The advan-

tage of the spectral representation is that it provides an intuitive representation of the harmonic

structure and the spectral envelope of a sound source, which facilitates the modeling of sound

sources. Spectral representation can be either multi-resolution or fixed-resolution.

Multi-resolution transform represents the signal with different frequency resolutions for differ-

ent frequency bands. It is widely used for polyphonic music transcription (Chafe and Jaffe, 1986;

Keren et al., 1998; Fernandez-Cid and Casajus-Quiros, 1998; Chien and Jeng, 2002; Kobzantsev

et al., 2005). The constant-Q transform (Brown, 1991) is a multi-resolution transform dedicated

to music signals, especially for the music based on the equal tempered scale. Q ratio is defined

as the center frequency divided by the required bandwidth, for example, Q = 1/(224 − 1) ≈ 34

for a quarter tone resolution 1. The kernel function of constant-Q transform can be sinusoids

or other wavelets such as Gabor (Kameoka et al., 2007). Similar to the multi-resolution repre-

sentation, the auditory model representation emulates the humane hearing system of which

the cochlea simulation converts the acoustic waves into a multi-channel representation of basilar

membrane motion. The auditory model representation thus involves multiple subband filtering,

called cochlear filtering, which is often approximated by the gammatone filter (Patterson and

Holdsworth, 1990; Wu et al., 2003; Marolt, 2004; Klapuri, 2005). The center frequencies are of-

ten selected to have a uniform distribution on a critical band scale. In this way, the frequency

resolution is adapted to the human perception. Multiple-F0 estimation algorithms based on such

a representation are called multi-pitch estimation algorithms.

The argument usually made for multi-resolution representation is based on its similarity to

the equal tempered scale or the human auditory system. However, there exist no physical reasons

11/24-octave filter bank
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that a multi-resolution transform is better in representing the structure of a harmonic sound. The

advantage of multi-resolution also seems to be its disadvantage: the frequency resolution at high

frequencies is sacrificed and individual partials of concurrent sources may not be distinguishable.

Since the problem of overlapping partials is to be addressed, it is important to maintain the

access to individual partials as much as possible. In this thesis, the STFT (Short-Time Fourier

Transform) is chosen for signal representation. Although being criticized for its fixed-resolution,

the STFT lays out the partials of a harmonic sound equally on the frequency axis, which provides

an intuitive analysis of harmonic sounds.

2.4.2 Iterative estimation or joint estimation

Polyphonic signals differ from monophonic signals in that the components of concurrent sources

may overlap. In general, iterative estimation algorithms attenuate the predominant source at each

iteration. Since the subsequently extracted F0s are unknown upon the attenuation/cancellation

process, it is almost impossible to estimate where the partials overlap and to prevent over-

attenuation of partials. On the other hand, the joint estimation approach has the advantage

that the overlapping partials can be inferred from a set of hypothetical sources. A more optimal

treatment of overlapping partials can thus be expected. However, the downside of the joint

estimation approach is its computational cost because the number of hypothetical combinations

grows exponentially with the polyphony hypothesis. A possible solution is to combine both

approaches to reach a compromise between the efficiency and the robustness of a multiple-F0

estimation system.

2.4.3 HRF0s and NHRF0s

Although the methods differ in various aspects, it is suggested to focus on the point of view

of the effectiveness in extracting two groups of F0s: harmonically related F0s (HRF0s) and

non-harmonically related F0s (NHRF0s). Consider two F0s f0H > f0L, both of them are

considered NHRF0s if they have the following relation

f0H =
m

n
f0L,m ∈ N, n ∈ N, n > 1 (2.2)

and the fraction m
n is coprime. On the other hand, f0H is considered HRF0s if

f0H = m · f0L,m ∈ N (2.3)

Theoretically, the harmonics of f0H overlap completely with f0L. The extraction of NHRF0s

and HRF0s is closely related to the fundamental assumptions of the noise model, the source

model and the source interaction model (see Section 1.3.2).

The noise model is closely related to the extraction of NHRF0s. The combination of NHRF0s

should explain as much as possible the periodic energy of the observed signal. If no distinction

is made between the periodic part and the noise, a fixed threshold on minimal residual could

either ignore weak sources or add spurious sources. Therefore, noise estimation is important for
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a multiple-F0 estimation system to robustly extract NHRF0s. Different from NHRF0s, HRF0s

are not much related to the noise model, but are related to the source model and the source

interaction model, instead. Since the harmonics of a HRF0 may overlap completely with another

source of a lower F0, the harmonics can be observed only when the energy is relatively high

such that they stand out of the envelope of the overlapped source at regular harmonic intervals.

Therefore, spectral smoothness principle and overlapping partial treatment are crucial to robust

extraction of HRF0s.
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3
PROPOSED METHOD

The objective of this thesis is to develop a frame-based multiple-F0 estimation system for monau-

ral music signals produced by harmonic musical instruments. The observed signal is represented

by the STFT, and it is assumed that the number of sources is fixed in the short-time analysis

frame. The problems involving the three fundamental models, the noise model, the source model

and the source interaction model, are to be dealt with in the respective parts of the thesis. The

proposed method handles the three fundamental models in a way different from the existing

methods for multiple-F0 estimation. Contrary to many state-of-the-art methods that do not use

an explicit model for the noise part of the signal, this thesis proposes a probabilistic description

of the noise level based on which the hypothetical sources are extracted. Noise modeling is meant

to distinguish the components that are not necessary to be explained by a set of the hypothetical

sources. The source model of the proposed method is a quasi-harmonic model without specific

amplitudes. The partial frequencies and amplitudes of hypothetical sources are estimated by

harmonic matching and overlap treatment. In order to correctly handle the overlapping partials,

which is related to the source interaction model, the joint estimation approach is selected to

evaluate a combination of hypothetical sources.

In this chapter, the signal model for the proposed multiple-F0 estimation algorithm is pre-

sented. Then, three principles: harmonicity, the smoothness of spectral envelopes and the syn-

chronous amplitude evolution of partials, which guide the development of the system are de-

scribed. They are the general assumptions of the physical properties of harmonic instrument

sounds. Finally, an overview of the proposed system is given.
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3.1 Generative Signal Model

The polyphonic signals comprising of multiple harmonic sound sources can be expressed as

eq.(1.16). In order to model quasi-periodic and quasi-stationary sources as general as possible,

several parameters are included in the generative signal model. The observed signal y[n] in a

short-time analysis frame is expressed as:

y[n] =

M
∑

m=1

ym[n] + z[n]

=

M
∑

m=1

Hm
∑

h=1

am,h[n] cos
(

θm,h[n] + φm,h

)

+ z[n], θm,h[n] = (1 + δm,h)hωmn

(3.1)

where n is the discrete time index, M is the number of concurrent sources and ym[n] is the

quasi-periodic part of the mth source. Hm is the number of partials for the mth source. The

hth partial of the mth source can be modeled as a sinusoid with amplitude am,h[n], initial phase

φm,h and frequency (1 + δm,h)hωm. ωm represents the fundamental frequency which is the mean

frequency of the time-varying phase θm,h[n]. δm,h models the deviation of a partial frequency

from its corresponding harmonic position. The noise part z[n] is explained by a generative

noise model in which the noise is understood as generated from white noise signal filtered by

a frequency-dependent spectral envelope with a limited cepstral order.

The signal model expressed in eq.(3.1) specifies the signal components in the time domain.

The Fourier transform of the windowed y[n] can be expressed as

Y (ω) =

M
∑

m=1

Hm
∑

h=1

Am,hejφ0W (j(ω − (1 + δm,h)hωm)) + Z(ω), for ω > 0 (3.2)

where W is the Fourier transform of the window function and Am,h =
am,h

2 assuming am,h[n]

constant. The observed spectrum is understood as generated by sinusoids and noise (Doval and

Rodet, 1991). All necessary information for F0 estimation is to be extracted from the properties

of spectral peaks. The observed spectrum is thus modeled as a cluster of successive spectral

peaks. A spectral peak is defined as the spectral regions between two neighboring spectral

valleys in which all the frequency bins are considered to belong to this peak. The amplitude

or the frequency of a spectral peak is defined by that of the bin with the maximal amplitude.

The other extended properties of a spectral peak such as normalized mean bandwidth, duration,

and frequency coherence are also extracted (see Appendix B). Each peak is considered either

sinusoid 1 or noise. That is, non-sinusoidal components like side-lobe peaks are considered noise.

Based on this model and given the observed spectrum, the most plausible F0 hypotheses are to

be inferred.
1A sinusoid peak could be single sinusoid or a sum of sinusoids at close frequencies
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3.2 Guiding Principles

Based on the generative signal model, the algorithms developed in this thesis follow three guiding

principles: harmonicity, the smoothness of spectral envelopes, and the synchronous evolution of

partial amplitudes within a source. These principles are the general assumptions of the physical

properties of harmonic instrument sounds.

Harmonicity

The harmonicity/periodicity principle inherits from the problem definition of F0 estimation. F0

estimation algorithms, either using explicitly a quasi-periodic signal model or not, are based on

the harmonicity principle that there is a repeated pattern in the observed signal. As long as the

noise part z[n] is effectively identified, a set of hypothetical sources should collectively explain

as good as possible the components that are identified as sinusoids.

Smoothness of spectral envelopes

Few single-F0 estimation algorithms solely based on the harmonicity principle can achieve ro-

bust performance. Several techniques are developed to prevent subharmonic errors as well as

super-harmonic errors. To prevent subharmonic errors, one technique is to examine the spectral

envelopes of the F0 hypotheses with competitive harmonicity, and smoother envelopes are pre-

ferred. This so-called spectral smoothness principle (Klapuri, 2003) is based on the assumption

that the spectral envelope of a harmonic instrument sound generally form a smooth contour. To

estimate the F0s of concurrent harmonic sounds, this principle is particularly useful for resolving

the ambiguities in the overlapping partials and for extracting HRF0s. The function of the spec-

tral smoothness principle can be interpreted with respect to two aspects: (1) When an abrupt

change is found in the spectral envelope of the hypothetical source, it can be the cue for the

partial collisions, according to which the partial segregation can be carried out. (2) Subharmonic

errors can be prevented because their spectral envelopes are less smooth than those related to

the correct F0s.

Synchronous amplitude evolution of partials

Partials of a harmonic source should evolve in time in a similar manner because they are gener-

ated by a common control such as the bowing of the strings. Although the partials of a harmonic

instrument sound may decay at different rates, the assumption of their synchronous evolution

is generally useful for the segregation of sound sources. For the case in which the analysis is

carried out on the time-frequency plane, this principle applies to the grouping of the partial

tracks evolving synchronously as a harmonic source. For the case that the analysis is carried out

exclusively at a single frame, it is possible to estimate the direction of evolution for each spectral

component (Röbel, 2003a). This principle discriminates sinusoids from noise in that noise has

random amplitude evolution.
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The three guiding principles concerning the physical properties of harmonic instrument sounds

are closely related to source segregation in auditory scene analysis (Bregman, 1990). The respec-

tive rules are: (1) A set of harmonics is not heard as a number of individual components but as

one single sound source. (2) The smoothness of the spectral envelopes seems to be important for

us to perceive them as one source. The partials that are raised in intensity will segregate more

readily from the others. (3) Common fate cues promote the grouping of partials into one source.

The cues can be correlated frequency changes, correlated amplitude changes and synchronous

onsets.

3.3 System Overview

To develop a multiple-F0 estimation system, three major problems are identified as the main

tasks:

1. Noise modeling: Derive a description of the noise level as the spectral envelope of noise

components, which facilitates the identification of the sinusoids and the noise.

2. Joint evaluation of F0 hypotheses: Develop a joint estimation algorithm for the case

when the number of concurrent sources is given.

3. Polyphony inference: Estimate the number of concurrent sources along with the related

F0s.

Based on the generative signal model, the guiding principles, and the model assumptions (see

Table 3.1), the algorithms for addressing the three problems are developed from Chapter 4 to

Chapter 7. An overview of the proposed system is given in the following (see Figure 3.1).

At each analysis frame, FFT (Fast Fourier Transform) is applied to the observed signal

to obtain the instantaneous spectrum. The observed spectrum is characterized by the time-

frequency properties of a collection of spectral peaks. The generative noise model represents the

noise envelope as a frequency-dependent spectral envelope with a limited cepstral order. The

noise is considered having a nearly constant expected magnitude within a narrow band and the

noise level is defined by successive Rayleigh distributions. The frequency-dependant noise level

is estimated through iterative peak classification and distribution fit. Based on the assumption

that the spectral peaks are of two classes: sinusoid and noise, the spectral peaks are classified by

a probabilistic threshold relative to the noise level (see Chapter 4). A set of hypothetical sources

observed signal represented as a cluster of successive spectral peaks classified as sinusoid/noise
noise model frequency-dependent envelope of limited cepstral order applied to white noise
source model quasi-harmonic model without specific amplitudes
interaction model the amplitude of overlapping partials determined by the strongest source

Table 3.1: Assumptions of the proposed method.
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Noise Level F0 Candidate
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FFT
Analysis

Polyphony
Inference

Joint F0

Figure 3.1: Overview of the proposed multiple-F0 estimation system.

should explain as many sinusoidal peaks as possible. For a combination of hypothetical sources,

the related hypothetical partial sequences are constructed by a partial selection technique and a

treatment of overlapping partials. To evaluate the plausibility of a set of hypothetical sources, a

score function is proposed, which formulates the guiding principles into four criteria (see Chapter

5). To improve the efficiency of the joint estimation process, three methods for the selection of F0

candidates are studied, aiming at the reduction of the number of combinations (see Chapter6).

Finally, the F0 hypotheses are consolidated to yield the most plausible set of F0s (see Section

7.1).
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4
ADAPTIVE NOISE LEVEL ESTIMATION

Given a polyphonic signal composed of harmonic instrument sounds, the generative signal model

explains the quasi-periodic part and the noise part by a sum of quasi-harmonic sources and by

a generative noise model, respectively. The approach of the thesis is to distinguish the noise

components from the sinusoidal components beforehand. Based on the preliminary estimation of

noise, the match between the identified sinusoidal components and a set of hypothetical sources

can be carried out afterwards. The generative noise model is described by a frequency-dependent

spectral curve approximating the noise level. The noise components are assumed to be generated

by filtering a white noise signal with a frequency-dependant smooth function. The estimation of

the noise level is important for the estimation of NHRF0s (non-harmonically related F0s). If the

energy of a hypothetical source of NHRF0s is significant compared with that of noise, it can be

considered a reasonable estimate. Otherwise, it probably corresponds to a spurious detection.

In this chapter, a novel algorithm is presented for the estimation of the colored noise level

for general audio signals. The modeling of the noise level is based on the assumptions that the

spectral envelope of noise varies slowly in frequency and that the amplitudes of the noise peaks

obey a Rayleigh distribution. By means of an iterative evaluation and adaptation of the noise

level, the sinusoid/noise classification is gradually refined until the identified noise peaks are

coherently explained by the estimated noise level. The evaluation of the proposed algorithm is

demonstrated at the end of the chapter.
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4.1 Generative Noise Model

A signal is called white noise if the knowledge of the past samples does not tell anything about

the subsequent samples to come. The power density spectrum of white noise is constant. By

means of filtering a white noise signal, correlations between the samples are introduced. Since in

most cases the power density spectrum will no longer be constant, a filtered white noise signal

is generally called a colored noise signal. With respect to statistical time invariance property,

the noise may be stationary or non-stationary.
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Figure 4.1: The colored noise level estimated for

a real-world spectrum.

The noise is understood as generated from

white noise filtered by a frequency-dependent

spectral envelope which is called the colored

noise level, or simply the noise level. The

noise level estimation must be adaptive in time

and in frequency such that non-stationary

noise and colored noise can be dealt with. In

this thesis, the noise level is defined as the ex-

pected magnitude level of the observed noise

peaks. A noise peak is defined as a peak that

can not be explained as a stationary or weakly

modulated sinusoid. The noise level can be

represented as a smooth frequency-dependent curve approximating the noise spectrum (de Krom,

1993) (see Figure 4.1). The envelope of the noise spectrum, covering most of the noise peaks,

can then be related to the noise level by a constant raise in magnitude.

4.2 Existing Approaches to Noise Level Estimation

Noise level estimation, or noise power spectral density estimation, is usually done by explicit

detection of the time segments that contain only noise, or by explicit estimation of harmonically

related spectral components (for quasi-periodic signals). Since the noise components often come

along with the sound source signal, the estimation of noise carried out for the noise-only segments

would introduce a systematic bias. The other approach is to estimate the F0s beforehand. The

harmonic parts can be extracted and the noise part can be estimated by subtracting harmonic

parts from the signal. However, this is difficult for multiple-F0 estimation and not appropriate

for non-harmonic sources.

A widely appreciated approach is the analysis of noise statistics. This is carried out by the

statistical analysis of power spectra across consecutive frames. This approach often assumes

that the analysis segment contains low energy portions and the noise present is more stationary

than the embedded signal (Ris and Dupont, 2001). Minimum Statistics method proposed by

Martin (1994) tracks the minimal values of a smoothed periodogram. He introduced later the

time-varying smoothing factor for periodograms and bias compensation (Martin, 2001). Cohen

(2003) followed this approach and proposed time-varying and frequency-dependent smoothing
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for periodograms.

de Krom (1993) proposed to estimate the noise floor of a spectrum by cepstral liftering

and spectral baseline shifting. Cepstral liftering is used to remove harmonic components in the

spectrum, and baseline shifting is used to position the noise floor at a reasonable reference level.

The noise part is estimated by the inverse transformation of the cepstrum, followed by a heuristic

baseline shift. Qi and Hillman (1997) further proposed to lifter out high-quefrency parts of the

cepstrum such that a smooth curve is obtained after transforming it back to the spectral domain.

However, this approach relies on identifying harmonic peaks of the underlying source.

The other classical approach is to remove the sinusoids and estimate the noise afterwards.

This involves sinusoidal component identification, either in a single frame (Peeters and Rodet,

1998; Hainsworth et al., 2001; Röbel and Zivanovic, 2004) or by tracking sinusoidal components

across several frames (David et al., 2003; Lagrange et al., 2005). Parametric methods usually

model the observed signal as several sinusoidal components embedded in additive white Gaus-

sian noise. The challenge faced by the parametric methods is the estimation of the model order,

i.e., the number of sinusoids. Badeau et al. (2004) pointed out that classical methods such as

maximum likelihood estimation rely on additive white noise hypothesis and tend to overesti-

mate the model order in the presence of correlated noise. Non-parametric methods include the

periodogram-based techniques and the classification of sinusoidal/noise peaks. Since the non-

parametric methods is not constrained by the white noise assumption, they are of a greater

freedom in dealing with modulated sinusoids embedded in the colored noise. No matter which

methods, the common difficulty is in identifying sinusoids in polyphonic signals because the

sinusoidal components may collide and its sinusoidality is ambiguous.

The proposed algorithm follows the non-parametric methods of Qi and Hillman (1997) and

Röbel and Zivanovic (2004) to classify the spectral peaks. The advantage is to have relaxed as-

sumptions compared to the maximum likelihood method and those reviewed by Ris and Dupont

(2001). To develop a frame-based multiple-F0 estimation system, it is proposed to classify the

spectral peaks in each short-time analysis frame independently. Accordingly, the non-stationary

noise is assumed to be handled based on the frame-by-frame analysis. The costly tracking of

sinusoidal components across the frames can then be avoided. Moreover, the spectral peak clas-

sification method proposed by Röbel and Zivanovic (2004) allows the control of the classification

results such that a bias towards sinusoids or noise can be easily altered. However, this method

is not suitable for polyphonic signals in which the sinusoids might collide with one another. A

part of the spectral information is then ambiguous. In order to improve the spectral peak clas-

sification in polyphonic cases, an adaptive noise level estimation algorithm is developed in the

following.

4.3 Modelling Narrow Band Noise

Since the noise level is frequency dependant, it is not appropriate to assume that noise is white.

A more reasonable assumption is that noise has a nearly constant expected magnitude within a

narrow frequency band. The assumption is thus relaxed. Accordingly, the Rayleigh distribution

39



may fit the distribution of the magnitudes of the noise components in each narrow band (see Ap-

pendix A). Consider a Gaussian white noise process with variance σ, the amplitude distribution

of its Fourier spectrum follows Rayleigh distribution(see Figure 4.2).

−5 −4 −3 −2 −1 0 1 2 3 4 5
x

(a) Gaussian distribution

p(x)   

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
X = FFT(abs(x))

(b) Rayleigh distribution

Figure 4.2: (a) Amplitude distribution of Gaussian white noise with σ = 1; (b) Spectral magni-
tude distribution of Gaussian white noise obeys Rayleigh distribution.

The Rayleigh distribution was originally derived by Lord Rayleigh in connection with a

problem in the field of acoustics. A Rayleigh random variable X has probability density function

(Johnson et al., 1994):

p(x) =
x

σ2
e−x2/(2σ2) with 0 6 x <∞, σ > 0 (4.1)

cumulative distribution function

F (x) = 1− e−x2/(2σ2) (4.2)

and the pth percentile is

xp = F−1(p) = σ
√

−2 log(1− p), 0 < p < 1 (4.3)

In Figure 4.3, the probability density function is plotted for different values of σ (σ =

0.5, 1, 1.5, 2, 2.5 and 3). σ corresponds to the mode of the Rayleigh distribution, which is the

most frequently observed value in X. Hence, p(σ) corresponds to the maximum of the probabil-

ity density function. Consider the Rayleigh random variable X as the observed magnitudes of

spectral peaks in a narrow band, then σ represents the most frequent magnitude values of noise

peaks (see Figure 4.4). Accordingly, the mode of the Rayleigh distribution can be used to derive

the probability of an observed peak belonging to the background noise process. The peaks with

the magnitudes smaller than σ are considered more likely to be noise. For the peaks with the

magnitudes larger than σ, the larger their magnitudes, the less probable they are noise.

For a given narrow band, e.g. each frequency bin k, the noise distribution can be modeled by
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(a) spectral magnitude

X   

(b) Rayleigh model p(X)

Figure 4.4: The probabilistic Rayleigh model for the spectral magnitude distribution of Gaussian
white noise. The dash line represents the mean magnitude.

means of a Rayleigh distribution with mode σ(k). Once σ(k) is estimated for each k, the curve

passing through these σ-value magnitudes represents the estimated Rayleigh mode, denoted by

Lσ(k). With the estimated Rayleigh mode, the noise threshold can be adjusted according to a

desired percentage of misclassified noise peaks (see eq.(4.3)). The related noise envelope Ln

can then be calculated by multiplying Lσ with
√

−2 log(1− p). Therefore, the problem is the

estimation of the frequency dependent σ(k).
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Figure 4.3: Rayleigh distributions with different

σ values.

It is known that the mean of a Rayleigh

random variable X is

E[X] = σ
√

π/2 (4.4)

or equivalently

σ =
E[X]
√

π/2
(4.5)

That is, the frequency dependent σ(k) can

be calculated if the mean noise magnitude

E[X], which is also frequency dependent, can

be estimated. An intuitive way to estimate

E[X] is to collect, for each bin, sufficient ob-

servations of the noise magnitudes and to estimate the mean value. However, this approach is

not viable for a frame-based analysis algorithm. The chosen approach is to estimate the noise

level as the cepstrally liftered curve and then to relate it to the mean noise level Lm. The

advantage of this approach is that the statistics of individual spectral bins are not evaluated

separately. As long as there are sufficient noise peaks in the observed spectrum, the cepstrally

liftered curve can be estimated as a smooth envelope across all the spectral bins (Qi and Hillman,

1997). The mean noise magnitude of each bin can thus be estimated. This approach is based on
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Figure 4.5: Overview of the adaptive noise level estimation algorithm.

the assumption that the noise level is changing only slowly with the bin index k to the extent

that the cepstrally liftered curve describes its variation with frequency. Based on the noise model

and the assumptions, the adaptive noise estimation algorithm is presented in the next section.

4.4 Iterative Approximation of the Noise Level

The algorithm starts with the estimation of the residual spectrum (see Figure 4.5). There are

two processes involved: the classification of spectral peaks and the subtraction of sinusoids. For

the classification of spectral peaks, three spectral peak descriptors proposed by Röbel and Zi-

vanovic (2004) are used because they are designed to properly deal with non-stationary sinusoids

(see Appendix B). For the estimation of sinusoidal parameters, the method proposed by Abe

and Smith (2005) is chosen because it provides an efficient and accurate estimation for weakly

modulated sinusoids (see Appendix C). After the initial classification of spectral peaks, the si-

nusoids are subtracted from the observed signal. Because both methods are not meant to deal

with closely spaced sinusoids, some sinusoids may not be correctly classified or effectively re-

moved. The estimation error due to the model inconsistency (single sinusoid instead of multiple

sinusoids) is expected to be compensated in the later stages. The main function of subtracting

sinusoids is to provide sufficient residual peaks for a proper statistical measure of the magnitude

distribution, even if the frequency resolution is limited and sinusoidal peaks are very dense.

Once the residual spectrum SR is obtained, the classification of spectral peak is carried

out again, followed by the process of the iterative approximation of the noise level (see Figure

4.5). The reason for the reclassification of spectral peaks is that the spectrum has changed

after the subtraction of sinusoidal peaks. The residual spectrum is divided into subbands of

an equal bandwidth 1. When the noise distributions in all subbands fit the related Rayleigh

distributions, the iteration process terminates. The evaluation of the distribution fit is achieved

by using a statistical measure because: (1) the amount of the observed samples is usually not

large enough to draw the underlying distribution and (2) statistical measures are representative

1For an analysis frequency up to 8kHz, the spectrum is equally divided into 25 subbands.
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of a distribution and are more efficient for verifying the underlying distribution. To this end,

skewness is selected for the distribution fit. Skewness is a measure of the degree of asymmetry

of a distribution (Stuart and Ord, 1998). If the right tail (tail at the large end of the distribution)

extends more than the left tail does, the skewness of the observed samples is positive. If the

reverse is true, the skewness is negative. If the two tails extend symmetrically, the skewness

becomes zero, e.g. Gaussian distribution. The skewness of a distribution is defined as

Skw(X) =
µ3

µ
3/2
2

(4.6)

where µi is the ith central moment. The skewness of Rayleigh distribution is independent of

σ(k):

Skwrayl =
2(π − 3)

√
π

√

(4− π)3
≅ 0.6311 (4.7)

If the distribution of the noise magnitudes in a subband is assumed Rayleigh, the remaining

sinusoids can be tested by means of the skewness of the magnitude distribution. Since the number

of the observed samples is limited to a small number, the biased estimation needs to be corrected.

Besides, the small-number observation may result in positive or negative skewness. If there are

more sinusoidal peaks (than noise peaks) with significant amplitudes within a subband, the

skewness will be negative. Therefore, the following condition: 0 < Skw({Xn}b) ·Cskw < Skwrayl

is proposed for a better convergence, where {Xn}b are the set of noise peak magnitudes in the bth

subband, and Cskw =

√
Ns(Ns−1)

Ns−2 is the correction factor given the number of samples Ns from

a population. Another issue is that, however, the assumption that the narrow band noise has a

nearly constant expected magnitude may not hold true for the selected bandwidth of a subband.

If σ(k) in the subband is not constant, which is the case for the colored noise, the distribution

of noise magnitudes in the subband will not be Rayleigh. To improve the consistency of the

skewness test, the noise magnitudes are rescaled by means of normalizing Xn with the current

estimated Rayleigh mode Lσ. Accordingly, the distribution fit condition is

0 < Skw({Xn(k)

σ(k)
}b) · Cskw < Skwrayl (4.8)

The noise level approximation can be realized by iterating the following processes:

1. Calculate the cepstrum of the noise spectrum1. The cepstrum is the inverse Fourier trans-

form of the log-magnitude spectrum. The dth cepstral coefficient is formulated as

cd =
1

2

∫ π

−π
log(Xn(ω))eiωddω (4.9)

By truncating the cepstrum and using the first D cepstral coefficients, we reconstruct a

smooth curve representing the mean noise level Lmlg (on the logarithmic scale) as a sum

1It is constructed from interpolating the magnitudes of noise peaks.
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Lmlg the mean noise level on the log amplitude scale eq.(4.10)
Lσ the estimated Rayleigh mode eq.(4.13)
Lm the mean noise level on the linear amplitude scale eq.(4.14)
Ln the noise envelope/threshold eq.(4.15)

Table 4.1: Summary of the noise levels.

of the slowly-varying components.

Lmlg(ω) = exp(c0 + 2
D−1
∑

d=1

cd cos(ωd)) (4.10)

The cepstral order D is determined by (Röbel and Rodet, 2005): D = Fs/max(∆fmax, BW )·
C, where Fs is half the sampling frequency, ∆fmax is the maximal frequency gap between

the consecutive noise peaks, BW is the subband bandwidth, and C is a parameter to set.

2. The mean noise level Lmlg is the expected value of log amplitudes log(Xn). It is necessary

to correct it as the expected value of linear amplitudes Xn. Assuming Y = log X , Φ(X),

we can calculate the expected value of Y (Rivet et al., 2007) :

E[Y ] =

∫ ∞

−∞
yp(y)dy =

∫ ∞

−∞
ypx(Φ−1(y))|dΦ−1(y)

dy
|dy

=

∫ ∞

−∞
y
e2y

σ2
e−

e2y

2σ2 dy

=

∫ ∞

0
log(x)

x

σ2
e−

x2

2σ2 dx

=

∫ ∞

0
(log(σ) + log(y))ye−y2/2dy, where y = x/σ

= log σ +

∫ ∞

0
log(y)ye−y2/2dy

= log σ +

∫ ∞

0

1

2
log(y2/2)e−y2/2ydy +

∫ ∞

0

log(2)

2
e−y2/2ydy

= log(σ)− γ

2
+

log(2)

2
≈ log(σ) + 0.058

(4.11)

where

γ = −
∫ ∞

0
log(z)e−zdz = 0.577215... (4.12)

is the Euler constant. The derived result relates log(Lmlg), or E[Y ], to the estimated

Rayleigh mode Lσ:

Lσ =
Lmlg

e0.058
= 0.9437Lmlg (4.13)

This cepstrally smoothed curve interpolates the σ values across the analysis frequency

range. Notice that if the estimated Rayleigh mode is calculated, without the correction of
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eq.(4.13), by using Lmlg of eq.(4.10), there will be a systematic error of underestimation

(L′

σ =
√

2/πLmlg ≈ 0.7979Lmlg). The corrected mean noise level (on the linear scale)

shall be

Lm =
√

π/2Lσ (4.14)

3. For each subband, check if the condition for the distribution fit is achieved (see eq.(4.8)).

If the condition is not achieved, the largest outlier is excluded. That is, the largest outlier

is re-classified as sinusoid. Otherwise, the iterative process is terminated.

When all the subbands meet the requirement of the distribution fit, the estimated Rayleigh

mode Lσ can be used to derive a probabilistic classification of all the spectral peaks into noise

and sinusoidal peaks by means of the pth percentile of Rayleigh distribution

Ln = Lσ

√

−2 log(1− p) (4.15)

with a user selected value for p. In Table 4.1, the four noise levels involved in the derivation

of the algorithm are summarized. Notice that if the underlying noise level varies a lot with

frequency so that the proposed model cannot capture the noise level evolution, the procedure

may not converge, or may not converge to a reasonable estimate.

4.5 Testing and Evaluation

Demonstration

To demonstrate the proposed algorithm, two examples are tested: a white noise signal and a

polyphonic signal. In both cases, the sampling frequency is 16kHz, the cepstral order coefficient

is set C = 1, and the percentage of noise to be included is p = 0.8 (see eq.(4.15)), that is, 20%

of the noise peaks are allowed to be misclassified according to the Rayleigh distribution.

In Figure 4.6, a white noise spectrum is shown with the estimated noise level. The estimated

mean noise level Lm does approximate the constant white noise mean. The estimated noise

envelope Ln is noted as the noise threshold to notify that this is a user-adjustable level. The

noise peaks are identified as the spectral peaks with magnitudes below this threshold. To further

demonstrate how the proposed algorithm adapts to the noise level in frequency, a polyphonic

signal is tested (see Figure 4.7). The estimated noise envelope seems to follow well the variation

of the noise floor.

Evaluation of noise level estimation

To evaluate the proposed algorithm, three kinds of signals are tested for the estimation of mean

noise level : (1) white noise, (2) single sinusoid embedded in white noise, and (3) twenty sinusoids

embedded in white noise. The analysis window is the Blackman window of length L = 93ms.
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Figure 4.6: Noise level estimation for a white noise signal.
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Figure 4.7: Noise level estimation for a polyphonic signal.

The sinusoids are created using exponentially damped sinusoids as follows

s[n] = Ae−αnej(βn2+ωn+φ) (4.16)

where A is instantaneous amplitude at the reference time index (usually in the center of the

window), α is the AM (amplitude modulation) rate, β is half the FM (frequency modulation)

rate (frequency slope), ω is instantaneous frequency at the reference time index, and φ is the

initial phase. The parameters for synthesizing sinusoids are randomly selected from uniformly

distributed variables of which the parameter ranges are specified in Table 4.2. Notice that the

sinusoids are allowed to overlap in the last test such that the synthesized signals resemble the

real-world polyphonic signals. The evaluation metrics uses the bias/variance analysis (Keijzer
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and Babovic, 2000):

MSE(L̂) =
1

NfNb

Nf
∑

i=1

Nb
∑

j=1

(L̂ij − Lw
i )2

=
1

Nf

Nf
∑

i=1

(L̄i − Lw
i )2 +

1

NfNb

Nf
∑

i=1

Nb
∑

j=1

(L̂ij − L̄i)
2

= Bias2 + Variance

(4.17)

where L̂ is the estimated mean noise level, Lw is the white noise level, Nb is the number of

frequency bins, Nf is the number of analysis frames, and L̄i is the mean of L̂ij within an analysis

frame.

parameter A α φ ω/2π β/2π

range [0.1 0.5] [0 0.3]/L [−π π] [0.01 0.3] [−0.5/L2 0.5/L2]

Table 4.2: The parameter distribution range for randomly synthesizing sinusoids.
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Figure 4.8: The bias and variance of the estimated noise level of synthetic signals.

For the white noise test, the bias is −4.88% and the standard deviation is 24.58%. The

systematic bias is possibly due to the subtraction of sinusoids which removes a certain amount of

noise energy from the observed signal. The large estimation variance could be due to the cepstral

order which is too high for the white noise spectrum that is rather flat. The testing results using

sinusoids embedded in white noise are shown in Figure 4.8 for the SNR (Signal-to-Noise Ratio)

from −20dB to 40dB. For the case in which only one sinusoid is embedded in white noise, the

proposed mean noise level estimator gives consistent performance compared to the white noise

test. When there are more sinusoids embedded, the bias seems to vary with different SNRs but

it is confined within 1%.
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On selecting the noise threshold

The noise threshold is controlled by the user-adjustable parameter p (see eq.(4.15)). It can be

formulated as follows, in terms of the difference in dB of the two noise level curves Ln and Lm.

∆dB = 20 log10(Ln)− 20 log10(Lm) = 20 log10(
√

−4 log(1− p)) (4.18)

from which

p = 1− e(−π/4)·10(∆dB/10)

(4.19)

In this way, the setting of p can be interpreted as the raise of the noise level from Lm by

∆dB. Notice that the proposed algorithm simplifies the magnitude distribution of spectral bins

by that of spectral peaks. In consequence, it is more intuitive to consider the inclusion of the

percentage of noise peaks, denoted by pn, while selecting a proper p. To investigate the relations

between pn and the percentage of noise bins, the white noise signal is again used, assuming all

the spectral bins and all the spectral peaks are noise. The related parameters are summarized

in Table 4.3 and their relations are shown in Figure 4.9.

p percentile of Rayleigh distribution
pn percentage of noise peaks
pb percentage of noise bins

Table 4.3: Summary of the measures of the percentages of noise components.
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Figure 4.9: The noise thresholds related to the percentages of noise components: (a) the per-
centage of noise peaks vs. the percentage of noise bins and p; (b) the percentage of noise peaks
vs. ∆dB

The dash line in Figure 4.9 (a) shows the relation between the percentage of the noise bins ,
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denoted by pb, and the designated percentage of noise peaks. It is found that pb is larger than pn

in average. The corresponding p is plotted as the solid line in Figure 4.9 (a), which is larger than

pb by about 3.3% in average. The equivalent raise in dB of the noise level is shown in Figure 4.9

(b). Figure 4.9 provides a look-up table just as the reference which gives a general idea for the

selection of p. For example, when one wants to include 90% of the noise peaks, the noise level is

raised above more than 95% of the noise bins, which corresponds to about 7.4dB.
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5
JOINT EVALUATION OF MULTIPLE F0
HYPOTHESES

Noise level estimation provides a probabilistic classification of the spectral peaks into sinusoids

and noise. According to the generative signal model, sinusoidal peaks are considered the partials

of the quasi-periodic sources. To estimate the F0s of the quasi-periodic sources, it is proposed to

jointly evaluate a set of F0 hypotheses. Each F0 hypothesis is related to its HPS (Hypothetical

Partial Sequence), and the correct combination of HPS shall have their partials match as

many sinusoidal peaks as possible in the observed spectrum. The source model and the source

interaction model are handled in the processes of constructing HPS: harmonic matching and

overlap treatment. The specially designed treatment of overlapping partials intends to remove

the ambiguity based on a hypothetical combination. It is proposed to evaluate the plausibility of

hypothetical sources based on three guiding principles: (1) spectral match with low inharmonicity ;

(2) spectral smoothness; and (3) synchronous amplitude evolution within a single source.

In this chapter, the development of the joint estimation algorithm is focused on the case in

which the number of sources is known. The objective is to develop a score function based on

the three guiding principles to evaluate a set of F0 hypotheses. The joint estimation algorithm

plays an important role in the scoring of all possible combinations based on which the polyphony

can be inferred in a later stage. This chapter begins with the description of the construction of

the HPS for a combination of F0 hypotheses. Then, the score function is presented to evaluate

the plausibility of a combination of hypothetical sources. Finally, the proposed algorithm is

evaluated by mixtures of harmonic instrument sounds.
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5.1 Generating Hypothetical Sources

The source model of an F0 hypothesis is a set of harmonic grid without specific amplitudes.

Given a set of F0 hypotheses, the frequencies and the amplitudes of their HPS are estimated

by two processes: (1) partial selection and (2) overlapping partial treatment. The partials of a

hypothetical source can be determined by matching the harmonics of the related quasi-harmonic

model with the observed peaks. To remove the ambiguity in the overlapping partials of HPS,

it is proposed to re-estimate, for each hypothetical source that overlaps, the partial amplitudes

based on the interpolation of non-overlapping partials.

5.1.1 Harmonic matching for partial selection

For each F0 hypothesis, the degree of match in frequency is evaluated between the model har-

monics and the observed peaks. A tolerance interval is designated in the neighborhood of each

model harmonic, which allows to handle the inharmonic partials. The spectral peaks situated in

the tolerance interval are considered matched peaks, otherwise unmatched ones. The degree of

deviation of the ith observed peak from the hth harmonic is expressed as

dm(i) =

{

|fi−fm,h|
αfm,h

if |fi − fm,h| < αfm,h,

1 otherwise.
(5.1)

where fi is the frequency of the ith observed peak and fm,h is the frequency of the hth harmonic of

the source model. The use of index m is to refer to the mth hypothetical source in a combination.

α determines the tolerance interval α·fm,h. When an observed peak is situated outside the related

tolerance interval, it is considered unmatched and dm(i) is set to 1. Therefore, 0 ≤ dm(i) ≤ 1. In

order to adaptively search the peaks matching to the model harmonics, the harmonic frequency of

the model is updated by fm,h+1 = fi + fm (when a matched peak is found for the hth harmonic)

where fm denotes the F0 value. If the hth harmonic does not match any observed peaks, the

next harmonic frequency is updated by fm,h+1 = fm,h + fm. The first harmonic is initiated by a

hypothetical F0, which implicitly constrains the harmonic locations around the multiples of the

hypothetical F0. In this way, the measure of harmonic matching is based on both the spectral

location principle and the spectral interval principle (Klapuri, 2004).

In the case of single-F0 estimation, the tolerance interval can simply be set as large as

0.5 · fm to allow inharmonic partials, whereas disallowing the overlaps of the tolerance intervals

of adjacent harmonics. In the case of multiple-F0 estimation, however, α shall be determined

in a more precise way because partials of concurrent sources may fall into the same tolerance

interval. A constraint can be posed on the frequency difference of two adjacent partials (see

Figure 5.1). The maximum and the minimum of the frequency difference between two adjacent

partials are
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replacemen

(1− α)fm,h fm,h (1 + α)fm,h (1 − α)fm,h+1 fm,h+1 (1 + α)fm,h+1

∆max

∆min

Figure 5.1: The maximum and the minimum of the frequency difference of two adjacent partials.
The tolerance interval of each partial is the region between two dash lines around the partial.

∆max = (1 + α)fm,h+1 − (1− α)fm,h ≈ fm + (2h + 1)αfm (5.2)

∆min = (1− α)fm,h+1 − (1 + α)fm,h ≈ fm − (2h + 1)αfm (5.3)
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Figure 5.2: α as a function of partial index.

in which the approximations fm,h+1 −
fm,h ≈ fm and fm,h+1 + fm,h ≈ (2h + 1)fm

are used. The allowed frequency range for a

peak to match a harmonic is thus (2h+1)αfm,

which is set to be limited by βfm where β is de-

fined as a factor of the fundamental frequency

fm. Then, α can be selected according to

α ≤ β

2h + 1
(5.4)

and β is a set to 0.3 (see the dash line in Fig-

ure 5.2). For the tolerance intervals of lower

partials, a constraint is further set, empirically, according to a quarter-tone frequency resolution.

That is, α = 21/24 − 1 = 0.029. With the two constraints on the tolerance interval, α can thus

be determined (see the solid line in Figure 5.2).

For polyphonic signals, there may be more than one peak falling into the same tolerance

interval. Some proposed to select the nearest peak around the related harmonic (Parsons, 1976;

Duifhuis and Willems, 1982). Others proposed to select the maximal peak (Klapuri, 2006).

All these techniques take into account only one peak in the tolerance interval and neglect the

others. However, both techniques are not robust when the matched peaks include spurious

peaks or the partials of concurrent sources. Selecting the nearest peak may select a spurious peak;

whereas selecting the maximal peak may select the partial of other sources. The proposed partial

selection technique begins with assigning the first partial to the nearest peak. For the consecutive

partials, two peak candidates are considered: (1) the nearest one and (2) the one of which the

mainlobe cover the related model harmonic. By means of comparing the average amplitude of

the previously selected three partials with the amplitudes of the two peak candidates, the peak

candidate forming a smoother envelope is allocated to the hypothetical source.
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5.1.2 Overlapping partial treatment

Given a combination of hypothetical sources, the overlapping partial positions can be easily

inferred. This information can then be used to estimate the partial amplitudes of each hypo-

thetical source. The goal is to make the best of the unambiguous information derived from the

non-overlapping partials to remove the ambiguity in overlapping partials. It is assumed that an

overlapping partial still carries important information about at least the HPS that locally has

the strongest energy. Therefore, the overlapping partial treatment aims to allocate the overlap-

ping partial amplitude to this HPS. Based on the spectral smoothness principle, the strategies

to estimate the amplitudes in the overlap positions are listed below:

– Partials having potential collisions are determined by the peaks that match to more than

one hypothetical sources. The overlap treatment is carried out in order of the partial

frequency.

– In each overlap position, the local energy of each HPS is estimated by the interpolation

of the amplitudes of the neighboring partials that do not overlap (Maher, 1990). The

amplitude of the overlapping partial is exclusively assigned to the HPS with the largest

local energy. The overlapping partial of that HPS is labeled as credible and is used like

a non-overlapping partial for the consecutive interpolation. For the rest of the colliding

sources, their amplitudes in the overlap position are replaced by the interpolated ampli-

tudes respectively. The use of the interpolated amplitudes is meant to maintain the local

smoothness of the envelope for the partial amplitudes that can not be easily inferred.

– When one of the neighboring partials is overlapped, the amplitude of the non-overlapping

partial determines the local energy. If both the neighboring partials are overlapped, the

partial of the related source is considered not credible. In this case, the amplitude of the

overlapping partial is replaced by the interpolated amplitude if the observed amplitude is

larger than the interpolation.

– When the amplitude of the overlapping partial is smaller than all the interpolated ampli-

tudes of the colliding sources, it is difficult to infer which hypothetical source contributes

the most. In this case, the colliding sources share the overlapping partial. The overlapping

partial in all HPS is labeled as credible for the consecutive interpolation. The idea is to

keep as many as possible the credible partials for the treatment of consecutive overlapping

partials.

An example of the overlapping partial treatment is demonstrated in Figure 5.3. The envelopes

of the HPS after this treatment are smoother. Following the bandwise smooth model (see Section

2.1.2), the proposed treatment uses the interpolated amplitude as an estimator of overlapping

partials. To examine the estimator based on the bandwise smooth model, its accuracy is evaluated

by harmonic instrument sound samples. The estimation error 1 is calculated between an observed

partial amplitude and the interpolated amplitudes of the neighboring partials. This test consider

1HPS are compressed exponentially by a factor of 0.5 beforehand.
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(a)    

 

 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
freq (Hz)

(b)    

 

 

F0 =   140 Hz
F0 =   264 Hz
F0 = 1051 Hz

F0 =   140 Hz
F0 =   264 Hz
F0 = 1051 Hz

Figure 5.3: An example of the overlapping partial treatment: (a) HPS constructed by partial
selection; (b) HPS after the treatment of the overlapping partials.
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Figure 5.4: The estimation errors of partial amplitudes using the interpolated amplitudes.
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only the partials that are larger than the interpolated amplitudes. Twenty-three instruments are

selected for this test (see Figure 5.4). The partials of the flute sounds and the piccolo sounds

decay rapidly along the frequency. Therefore, the interpolation causes dominant errors when a

relatively strong partial is used with a relatively weak partial, resulting in an over-estimation of

the partial amplitude. Similarly, the strong resonances of, for instance, the oboe and the plucked

string instruments, which boost certain partials immensely can cause a significant estimation

error, too.

5.1.3 Spectral flattening

To further attenuate the dynamics of the spectral envelopes, HPS are compressed exponentially

such that an “equalized” spectral envelope is attained. This technique, called spectral flatten-

ing, makes HPS more appropriate to be evaluated with regard to the spectral smooth principle.

The usual way to spectral flattening is to take the logarithm of the spectrum or compress the

spectrum exponentially (Sreenivas and Rao, 1981). It is observed that taking the logarithm of

the spectrum eliminates the characteristics of the spectral envelopes and boosts the noise at the

same time. However, the “unsmoothness” of spectral envelopes is useful for the extraction of

HRF0s (see Section 6.2). Hence, the more flexible way is to apply an exponential compression

such that the compromise between the attenuation of the dynamics and the preservation of the

characteristics can be controlled. Karjalainen and Tolonen (2000) investigated the exponential

compression of the spectrum for SACF, and a factor of 0.67 was found to be a good choice.

This compression factor, in fact, corresponds to the power law relation between loudness level

LL and sound intensity I (Stevens, 1970): LL = C1
3
√

I = C2
3
√

(∆p)2 where ∆p is the sound

pressure variation. C1 and C2 are frequency dependent constants. Empirically, it is observed

that the exponential compression of 0.5, i. e., the square root, has a similar compression effect

to that of 0.67. In addition, the square root is of better computational efficiency. Therefore, the

exponential compression of 0.5 is generally applied to the HPS for evaluating the smoothness of

the spectral envelopes.

5.2 Score Function

After the construction of the most reasonable HPS for a set of F0 hypotheses, a score function is

designed to evaluate the plausibility of the combination of the hypothetical sources. Based on the

three guiding principles, four score criteria are proposed: harmonicity (HAR), mean bandwidth

(MBW), spectral centroid (SPC), and the standard deviation of mean time (SYNC). The score

function is formulated as the linear combination of the four criteria.

5.2.1 Harmonicity

The score criterion HAR evaluates the harmonic matching between the combination of the hy-

pothetical sources and the observed spectral peaks. It is based on the harmonicity principle

which indicates the harmonicity and the explained energy of a hypothetical source. To derive
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the combinatorial property of harmonicity for M hypothetical sources, their individual deviation

vectors are first combined as follows:

DM (i) = min
(

{dm(i)}Mm=1

)

, ∀i ∈ I (5.5)

That is, each observed peak is matched with the closest partial in the hypothetical sources such

that the resulting combination explains the observed spectrum with the lowest inharmonicity.

HAR is thus defined as the weighted sum of DM (i) for all peaks

HAR =

∑I
i=1 Spec(i)a ·DM (i)

∑I
i=1 Spec(i)a

(5.6)

where the peak salience Spec(i) is the sum of linear amplitudes for all the bins within the

ith spectral peak. The reason of not using the peak energy (the sum of squared amplitudes)

is to not emphasize the dynamics of partial amplitudes. In order to equalize the significance

of the peaks, an exponential compression a = 0.5 is applied to the peak salience. Because the

subharmonics may have competitive harmonic matching compared to that of the correct F0s,

three score criteria are designed to evaluate the plausibility of each hypothetical source.

5.2.2 Mean bandwidth

To score the spectral smoothness of a hypothetical source, the frequency content of the envelope

of a HPS is evaluated using the mean bandwidth as a criterion. Each HPS is first assembled

with its flipped sequence to construct a symmetrical sequence gm. This process is meant to

avoid the discontinuity at the first partial, and to obtain a smooth representation of HPS (see

Figure 5.5(a)). Applying K-point 1 FFT to gm, the spectrum Gm of HPS is acquired (see Figure

5.5(b)). The score criteria mean bandwidth is defined as follows

MBWm =
1

K/2

√

√

√

√2 ·
∑K/2

k=1 k|Gm(k)|2
∑K/2

k=1 |Gm(k)|2
(5.7)

which indicates the degree of energy concentration in the low-frequency region of Gm. In this

way, the envelope of gm with smaller variations results in a smaller value of MBWm. The function

of MBW is to discriminate a correct F0 from its subharmonics. For a subharmonic F0/n, the

envelope is “disturbed” at every n partial, which reflects the periodic peak in the spectrum of its

HPS. That is, the high frequency components are dominant at multiples of 1/n measured on the

normalized frequency scale. To further illustrate the function of MBW, a clarinet sound signal is

used to demonstrate the difference in the envelope smoothness for the HPS of F0 and the HPS

of F0/2 (see Figure 5.5). Although the resonance structure of the clarinet sound does not result

in a smooth spectral envelope, the envelope of F0/2 is less smooth than that of F0. Due to the

missing even harmonics, the envelopes are disturbed every 4 partials in HPS, which results in

the dominant frequency components at multiples of 0.25 (see Figure 5.5(b)). Compared with the

1Two times the next power of 2 of the length of gm.
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Figure 5.5: Spectral smoothness comparison of a clarinet sound playing the note Bb3.

HPS of F0, the HPS of a subharmonic like F0/2 generally has more high frequency energy. That

is, the energy spreads more widely in frequency and MBW is larger.

5.2.3 Spectral centroid

For harmonic instrument sounds, the spectral centroids tend to lie around the lower partials

because the higher partials often decay rapidly. According to this general property related to

the spectral smoothness principle, the centroid can evaluate the energy spread of a HPS:

SPCm =
1

B/2

√

2 ·
∑Nm

n=1 n[HPSm(n)]2
∑Nm

n=1[HPSm(n)]2
(5.8)

where Nm is the length of HPSm. B is a normalization factor determined by ⌊F90/F0min⌋. F90,

called the spectral roll-off (Peeters, 2003), which stands for the frequency limit containing 90%

of spectral energy in the analysis frequency range, and F0min is the minimal F0 hypothesis in

search. Since the spectral envelopes of harmonic instrument sounds are not always smooth, SPC

works as a further test, in addition to MBW, of the related physical property. This criterion

works as a penalty function for the subharmonics of which the HPS matches the partials of

concurrent sources.

5.2.4 Synchronicity

To evaluate the synchronicity of the temporal evolution of the partials in a HPS, mean time is

estimated for individual spectral peaks. Mean time is an indication of the center of gravity of

the signal energy (Cohen, 1995). It can be defined in the frequency domain as the weighted sum

of group delays (see eq.(B.6)). The mean time of a spectral peak can be estimated by considering
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only the frequency bins within a spectral peak, which can characterize the amplitude evolution

of the related source (Röbel, 2003a). For a coherent HPS, the synchronous evolution of partials

is expected. This results in a small variance of mean time w.r.t. the matched peaks. The mean

time of a hypothetical source, denoted as Tm, is calculated as the power spectrum weighted sum

of the mean time of the hypothetical partials. The standard deviation of the mean time of the

partials is then formulated as

SYNCm =
1

L/2

√

∑

i∈HPSm

{(t̄i − Tm)2 · wm(i)} (5.9)

where L is the window size, t̄i denotes the mean time of the ith observed peak. The weighting

vector wm, normalized to sum to one, is constructed from HPS by disregarding (set to zero)

the overlapping partials of which the spectral phases are possibly disturbed. Since this criterion

makes use of the noise, an exponential compression factor of 0.23 is applied to wm in order to

raise the significance of the noise components (see the specific loudness descriptor in (Peeters,

2003)). wm avoids the use of the disturbed phases of overlapping partials and makes use of the

spurious peaks to penalize a HPS containing more noise peaks.

Notice that the three criteria MBWm, SPCm and SYNCm are evaluated individually for each hy-

pothetical source. To combine the individual criteria into combinatorial ones, they are weighted

by the effective salience of the respective hypothetical sources. The effective salience is the

sum of the peak salience of the “credible” partials within a HPS. The term “effective” is used be-

cause the ambiguous partials have been treated, and what remain in the HPS are representative

of the hypothetical source. The weighted sum of individual criteria is normalized by the sum

of effective salience, giving rise to the resulting score criteria with values between 0 and 1. The

score function is formulated as a linear combination of the four criteria:

S = p1 · HAR + p2 ·MBW + p3 · SPC + p4 · SYNC (5.10)

where {pj}4j=1 are the weighting parameters. The four criteria are designed in a way that a

smaller weighted sum stands for a better score. Notice that HAR favors lower hypothetical F0s

whereas MBW, SPC and SYNC favor higher ones. Therefore, the criteria perform in a comple-

mentary way. The weighting parameters shall be optimized to balance the relative contribution

of each criterion such that the score function generally ranks the correct F0s the best. To refine

the F0 values, the linear regression is applied to the effective hypothetical partials for a given

combination of F0 hypotheses.

5.3 Score Criteria for Musical Instrument Sounds

To demonstrate the functions of the score criteria, the score criteria for single-note sound signals

are illustrated (see Figure 5.6). The note samples are collected from four databases: RWC

Musical Instrument Sound database, McGill University Master Samples, IRCAM Studio On Line
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database and Iowa Musical Instrument Samples database. There are 23 categories of musical

instruments. The four criteria are signal descriptors when we refer to monophonic signals. The

characteristics of musical instrument sounds are reflected in the score criteria. For example,

the resonances at odd harmonics of the clarinet sound give rise to a rather unsmooth spectral

envelope and thus the MBW is larger. The resonance maximum of the bassoon sound is often

higher than the first partial, which results in a wider energy spread and thus the SPC is larger.

Pizzicato sounds are comparatively noisy and their HPS tend to match more noise peaks, which

results in larger SYNC.
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Figure 5.6: Score criteria for a variety of musical instruments

The comparisons of the score criteria among F0, F0/2 (subharmonic F0) and 2F0 (superhar-

monic F0) are also demonstrated (from Figure 5.7 to Figure 5.10). To facilitate the comparison,

the score criterion values related to F0/2 and 2F0 are shown at the same note index in the respec-
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Figure 5.7: HAR comparison
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Figure 5.8: MBW comparison
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Figure 5.9: SPC comparison
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Figure 5.10: SYNC comparison

62

Chapter5/Chapter5Figs/spc_F0s.eps
Chapter5/Chapter5Figs/sync_F0s.eps


0
0.1
0.2
0.3
0.4
0.5
0.6

A
b1 A

1
B

b1 B
1

C
2

D
b2 D

2
E

b2 E
2

F
2

G
b2 G
2

A
b2 A

2
B

b2 B
2

C
3

D
b3 D

3
E

b3 E
3

F
3

G
b3 G
3

A
b3 A

3
B

b3 B
3

C
4

D
b4 D

4
E

b4 E
4

F
4

G
b4 G
4

A
b4 A

4
B

b4 B
4

C
5

D
b5 D

5
E

b5 E
5

F
5

G
b5 G
5

A
b5 A

5
B

b5 B
5

C
6

D
b6 D

6
E

b6 E
6

F
6

G
b6 G
6

A
b6 A

6
B

b6 B
6 

 

0
0.1
0.2
0.3
0.4
0.5
0.6

A
b1 A

1
B

b1 B
1

C
2

D
b2 D

2
E

b2 E
2

F
2

G
b2 G
2

A
b2 A

2
B

b2 B
2

C
3

D
b3 D

3
E

b3 E
3

F
3

G
b3 G
3

A
b3 A

3
B

b3 B
3

C
4

D
b4 D

4
E

b4 E
4

F
4

G
b4 G
4

A
b4 A

4
B

b4 B
4

C
5

D
b5 D

5
E

b5 E
5

F
5

G
b5 G
5

A
b5 A

5
B

b5 B
5

C
6

D
b6 D

6
E

b6 E
6

F
6

G
b6 G
6

A
b6 A

6
B

b6 B
6 

 

0
0.1
0.2
0.3
0.4
0.5
0.6

A
b1 A

1
B

b1 B
1

C
2

D
b2 D

2
E

b2 E
2

F
2

G
b2 G
2

A
b2 A

2
B

b2 B
2

C
3

D
b3 D

3
E

b3 E
3

F
3

G
b3 G
3

A
b3 A

3
B

b3 B
3

C
4

D
b4 D

4
E

b4 E
4

F
4

G
b4 G
4

A
b4 A

4
B

b4 B
4

C
5

D
b5 D

5
E

b5 E
5

F
5

G
b5 G
5

A
b5 A

5
B

b5 B
5

C
6

D
b6 D

6
E

b6 E
6

F
6

G
b6 G
6

A
b6 A

6
B

b6 B
6 

 

F0

subharmnonic F0

superharmonic F0

Figure 5.11: SCORE comparison

tive sub-figures. As expected, F0 is better than 2F0 for HAR because there are more harmonics

in the F0 model than those in the 2F0 model (Figure 5.7). Surprisingly, F0 is still better than

F0/2. This is probably because the partial selection prefers smooth envelopes such that more

noise peaks are selected for the F0/2 model. Since the noise peaks have been discarded for HAR,

F0/2 is worse than F0 in general. In addition, for inharmonic sounds F0/2 might have a worse

harmonic matching compared to F0. F0 and 2F0 do not differ much for MBW, which conforms to

the spectral smoothness principle (see Figure 5.8). On the other hand, F0/2 is largely disfavored

by about 0.4 compared to the MBW of F0 and 2F0. Because SPC is also designed to disfavor

lower F0s, the results are similar to that of MBW (see Figure 5.9). SYNC makes use of noise

peaks to disfavor subharmonics and F0/2 is disfavored by about 0.05 in general (see Figure 5.10).

For the higher notes, the increase in SYNC of 2F0 may be due to the less-stationary nature of

high frequency partials. Finally, the resulting scores are also compared (see Figure 5.11). The

weighting parameters are trained by a database containing not only monophonic samples but

also polyphonic samples (see Section 5.4). The resulting score has rather equal quality for the

range of notes considered (compare the plot for F0 from Figure 5.7 to Figure 5.11).

5.4 Evaluation

Following the evaluation method of Klapuri (2003), musical instrument sound samples are semi-

randomly mixed to create the database (see Section 7.2.2) for the evaluation of the presented

joint estimation algorithm. Non-transient parts of monophonic samples are pre-selected and

then mixed with equal mean-squared energy. Multiple-F0 estimation of a polyphonic sample is

carried out within a single frame. The number of sources, or the polyphony, is given for the score
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Figure 5.12: Comparison of the functioning of the score criteria: deactivation of MBW (no
MBW), deactivation of SPC (no SPC), deactivation of SYNC (no SYNC) and activation of all
the criteria (ALL).

function to find the most probable set of F0 hypotheses. The F0 search range is set between

50Hz and 2000Hz. The maximal analysis frequency is set at 8000Hz. Blackman window is chosen

as the analysis window. A correct estimate should not deviate from the reference value by more

than 3%. The error rates are computed as the number of wrong estimates divided by the total

number of target F0s. To train the weighting parameters {pj}4j=1, 100 polyphonic samples for

polyphony from one to five are created as the training database. The parameters are trained by

the evolutionary algorithm (Schwefel, 1995) and the set resulting in the best performance 1 is

selected for the score function. For the evaluation, two analysis window sizes, 186ms and 93ms,

are tested for the polyphony from one to five (see Table 5.1). This experiment follows the setups

of Klapuri (2003) but different in the semi-random way of mixing monophonic sound samples.

The results demonstrate the competitive performance of the proposed algorithm compared to

several algorithms proposed by Klapuri (2006). To study the significance of MBW, SPC and

SYNC, a further test is carried out in which one of the three criteria is deactivated. This

test shall give an idea about how effectively each criterion disfavors wrong hypothetical sources

according to its guiding principle. HAR is activated for all the tests because it is essential for F0

estimation. The comparison with the original result is shown in Figure 5.12. It is observed that

the deactivation of any of the three criteria degrades the overall performance.

window size ONE TWO THREE FOUR FIVE

186ms 0.05% 0.42% 2.03% 3.33% 6.45%
93ms 0.06% 1.23% 4.13% 7.38% 12.86%

Table 5.1: Evaluation of the joint estimation algorithm in the case that the number of F0s is
given.

1{pj}
4
j=1 = {0.3774, 0.2075, 0.2075, 0.2075}
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6
ITERATIVE EXTRACTION OF F0
CANDIDATES

Given the number of sources, the joint estimation algorithm jointly evaluates all the possible

combinations among F0 candidates. The joint estimation approach has the advantage over the

iterative approach in the handling of overlapping partials. However, the number of combinations

grows exponentially with the number of F0 candidates as well as the polyphony. N candidates

amount to
(N
M

)

combinations for the polyphony M . If the F0 candidates are, for instance, sam-

pled on a 1Hz grid between 50Hz and 2000Hz, there will be more than one billion combinations

to evaluate for a polyphony of three. Therefore, the selection of F0 candidates plays an impor-

tant role in a joint estimation approach. A proper candidate selection scheme helps to reduce

unnecessary calculations while keeping the robustness of an F0 estimation algorithm.

In this chapter, two approaches to F0 candidate selection are studied. One is based on the

use of a threshold for a polyphonic salience function. Two salience functions are proposed: one

is based on the harmonicity principle and the other is based on the beating of adjacent partials.

A candidate selection method based on the iterative estimation approach is also presented. This

method first iteratively estimates NHRF0s (non-harmonically related F0s). HRF0s (harmoni-

cally related F0s) are then extracted from the probable harmonic sequences within the HPS of

NHRF0s. The three methods are evaluated with respect to the accuracy of the selection of can-

didates and the accuracy of the estimation of multiple F0s, as well as the number of candidates.
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6.1 Polyphonic Salience Functions

The usual approach is to select F0 candidates according to the salience measure of a single-F0

estimation algorithm. The salience measure indicates the degree of periodicity/harmonicity, or

other kinds of information. Because the single-F0 estimation algorithm is applied to polyphonic

signals, the resulting salience function is called the polyphonic salience function (see 2.2.2).

This approach usually depends on a threshold for the salience to select the locally salient F0

candidates. In most cases, the subharmonics and the super-harmonics of the correct F0s have

competitive salience to that of the correct F0s. The difficulty in setting the threshold is to reach

the compromise between the selection of the correct F0s and the reduction of their subharmonics

and super-harmonics (see Figure 1.7). To avoid an excessive selection of the subharmonics,

spectral pattern matching (see Section 2.2.3) can be a solution provided that the source models

are representative of the spectral envelopes involved. The blackboard system usually performs

partial tracking beforehand and selects the continuous trajectories for the related F0 candidates

(see Section 2.2.5). In the statistical signal modeling approach, a good selection of F0 candidates

as initial conditions can help the parameter adaptation converge to optimum with fewer iterations

(Dubois and Davy, 2007). Goto (2000) used the fixed-point estimation (Abe et al., 1995) to select

dominant and stable partials as F0 candidates. Kameoka et al. (2007) picked the 60 largest peaks

in the observed spectrogram within 400 consecutive frames. In the following, two polyphonic

salience functions are proposed, considering the easy integration of the joint estimation algorithm.

6.1.1 Harmonicity

The score criterion harmonicity (see eq.(5.6)) can be used as a harmonicity measure of an F0

hypothesis. This criterion indicates the inharmonicity of an F0 hypothesis; therefore, the local

minima represent potential candidates (see Figure 6.1(a)). The harmonicity criterion in general

favors low-F0 hypotheses over high-F0 hypotheses because the number of partials of a hypothet-

ical source decreases with the increase of its related F0. The threshold is suggested to be as high

as 0.95 to ensure the inclusion of all correct F0s. However, when the number of sources increases,

the number of spurious candidates increases immensely. The spurious candidates are mostly the

subharmonics of the correct F0s and the subharmonics of the harmonics of the correct F0s.

6.1.2 Partial beating

A signal with more than one sinusoidal component exhibits periodic fluctuations, called beating,

in the temporal envelope. The rate of beating depends on the frequency difference between every

two sinusoidal components (Klapuri, 2004). Given two sinusoids of different frequencies, the

magnitude of the beating is determined by the sinusoid of the smaller magnitude. This property

is useful for distinguishing the HPS of a correct F0 from that of its subharmonics. Because the

HPS of the subharmonics generally match more noise peaks than the HPS of the related F0

does (see Figure 5.5), the resulting beating should be smaller. Accordingly, the partial beating
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measure is defined as follows

PB =
1

Amax

Hb
∑

h=1

min(a(h), a(h + 1)) (6.1)

where a(h) is the partial amplitude relative to the noise envelope of the hth hypothetical partial.

Amax is the maximal amplitude of the observed peaks, which is used for normalizing PB between

0 and 1. Hb is the number of partials, which is empirically set to be maximally 10 partials. The

use of a fixed number of partials is for the purpose of the normalization of PB among all F0s in

search. Two adjacent partials are considered a pair to produce the beating. For each pair of the

beating, the smaller one determines the effect of the beating for their frequency difference, that

is, the F0. The reason to use the partial amplitude relative to the noise envelope is to disregard

the beatings related to the noise components. In this way, only when two sinusoidal partials

beat each other can the effect of beating be dominant. The partial beating measure is related

to the spectral smoothness principle. When the smoothness of a spectral envelope is disturbed

by dominant overlapping partials, the beating of a large overlapping partial with its adjacent

partials is determined by the smaller partial. That is, the overlapping partials are taken care of

implicitly. Although the partial beating measure avoids the selection of a significant number of

subharmonic candidates, super-harmonic candidates often have competitively dominant beating

effects.
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Figure 6.1: Two polyphonic salience function for F0 candidate selection: (a) HAR (harmonicity);
and (b) PB (partial beating). The circles indicate the correct F0s at around 208Hz, 494Hz and
1382Hz. The empirical thresholds for both criteria are shown as the respective dash lines at 0.95
and 0.05.

A salience function can be derived from combining both harmonicity and partial beating

principles (See Appendix E). This is the inter-peak beating (IPB) function demonstrated in

Section 1.2.2. Since IPB gives similar results of PB with respect to the selection of candidates,

it will not be evaluated at the end of this chapter.
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6.2 Extraction of Non-Harmonically Related F0s (NHRF0s)

The method based on HAR is prone to select subharmonic candidates, whereas the method

based on PB is prone to select super-harmonic candidates. No matter which methods, setting a

threshold of a polyphonic salience function has the drawback that the compromise made between

the selection of weaker sources and the reduction of the number of F0 candidates is unavoidable.

This is because the polyphonic salience functions are often normalized with respect to the total

energy of the signal. When a strong source is present in the signal, the other weaker sources may

not have competitive salience compared with that of the F0 hypotheses related to the harmonics

of the strong source. One way to deal with this normalization issue is to iteratively extract

F0 candidates and suppress their harmonics to update the normalization factor of the salience

function. Suppressing an extracted source has the advantage that the salience function can be

normalized with respect to the residual of the signal. In this way, the common subharmonics

of the correct F0s can be gradually suppressed and the weak sources can thus be iteratively

extracted (see Figure 6.2). However, the iterative suppression of all partials of an extracted

source has the danger of suppressing the salience of its HRF0s as well. In consequence, the

salience of HRF0s will not be significant enough to be extracted afterwards. To address this

issue, an iterative algorithm is proposed to extract the candidates of NHRF0s as well as those of

HRF0s.
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Figure 6.2: Iterative suppression of the extracted sources and the resulting HAR. The three
circles mark the salience of the three notes: Ab3 (≈ 208Hz), B4 (≈ 494Hz) and F6 (≈ 1382Hz)
mixed in the signal. (a) original HAR; (b) HAR after suppressing the note Ab3; (c) HAR after
suppressing the notes Ab3 and F6.

The extraction of NHRF0s involves three parts: predominant-F0 estimation, the verifica-

tion of an extracted F0 candidate and a criterion to stop the iteration (see Figure 6.3). For

predominant-F0 estimation, the score function is used to extract the most probable F0. To sup-

press an extracted source, the peak weights (see eq.(5.6)) of the related peaks matched to the

partials are set to zero. The harmonic matching of the HAR criterion is thus normalized with

respect to the remaining spectral peaks. The other score criteria are fixed on the assumption

that even without the treatment of the overlapping partials, MBW, SPC and SYNC are still able
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Figure 6.3: Iterative extraction of F0 candidates.

to collectively disfavor the candidates of subharmonic F0s and those of super-harmonic F0s. To

avoid the extraction of spurious candidates, the HPS of the predominant F0, denoted by “pred-

F0”, is first constructed, considering its combination with the HPS of the extracted NHRF0s (see

Section 5.1), and then its harmonic-to-noise ratio (HNR) (Qi and Hillman, 1997) is evaluated.

The HNR is defined as the average ratio between the partial peak amplitudes and the related

noise level, considering only the first 10 partials. If the HNR is smaller than the threshold δH , the

extracted F0 is considered spurious and is then discarded. In order to calculate a more reliable

HNR, the overlapping partials are inferred from the combination of the HPS of the extracted

NHF0s and then reallocated (see Section 5.1.2). The verification of a pred-F0 by its HNR is

meant to compensate the predominant-F0 estimation part in which the overlapping partials are

not taken care of. The iterative extraction of NHRF0s continues until the residual-to-noise

ratio (RNR) is below the threshold δR. The RNR is defined as the average ratio between the

residual peak amplitudes and the related noise level, considering only the residual peaks larger

than the related noise level.

In order to study the thresholds δR and δH for RNR and HNR, respectively, the performance

of the score function is investigated using the tails of harmonic instrument samples where the

partials become weaker. On the assumption that there is only one harmonic source in each note

of instrument sound samples, their RNR can serve as the reference values for δR to prevent the

extraction of spurious sources. On the other hand, HNR characterizes the SNR limit of the

quasi-periodic parts that an F0 estimator is able to extract. It is expected that the single-F0

estimator fails when the harmonicity/periodicity is low and noise is dominant. For each single-

note sample, the lowest RNR and the lowest HNR in all the analysis frames in which the F0s

are correctly estimated are used to learn the thresholds δR and δH , respectively. Each threshold

is learned as a function of the MIDI note number (see Figure 6.4). To learn the threshold δR for

each MIDI note, it is proposed to use the maximal RNR of all the related samples. Because there

are fewer residual peaks in polyphonic signals than those in monophonic signals, it is expected

to compensate the normalization issue by taking the maximum. δR is thus determined by the
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Figure 6.4: The note-dependant thresholds for HNR and RNR, learned from the tails of harmonic
instrument sound samples for the notes ranging from Ab1 to B6. The thick lines represent the
learned thresholds, and the thin lines represent their second-order polynomial approximation
curves.

second-order polynomial approximation to RNRmax (the dash lines in Figure 6.4). During the

process of iterative extracting NHRF0s, δR is updated with respect to the lowest F0 extracted.

To learn the threshold δH for each MIDI note, it is proposed to use the average HNR of all

the related samples (the solid lines in Figure 6.4). However, the learned HNR increases rapidly

as the F0 becomes higher, which implies that the score function tends to fail for high F0s.

Since the HNR learned in this way does not provide reasonable results for some instances, the

threshold is set according to δR and the average difference between the two approximation curves:

δH = δR + 6.67dB.

6.3 Detection of Harmonically Related F0s (HRF0s)

Each NHRF0 represents a harmonic group in which HRF0s are to be extracted. This process,

called harmonic split, extracts the hypothetical sources of HRF0s from the HPS of NHRF0s.

The idea of harmonic split can be demonstrated by a simple example (see Figure 6.5). Consider

three harmonic sources of fundamental frequencies F0a, F0b and F0c, in which F0b/F0a = 3/2

and F0c = 2 ·F0a. Assuming that the NHRF0s F0a and F0b are extracted in the previous stage,

harmonic split aims at extracting F0c from the HPS of F0a. The harmonic relation between F0a

and F0c causes the partials of F0a to boost at regular frequency intervals (every 2 · F0a in this

case). Therefore, it is assumed that as long as a HRF0 is dominant and disturbs the envelope

smoothness of the related NHRF0, it is reasonable to consider the HRF0 to be an F0 candidate.
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Figure 6.5: The extraction of a HRF0 F0c from the HPS of a NHRF0 F0a. F0a and F0b are
related by a perfect fifth in a well-tempered scale. F0a and F0c are related by one octave.

Note-dependent tone models

To measure how much the smoothness of a spectral envelope is disturbed, it is necessary to refer

to certain models upon the comparison with the observed envelopes. Through the development

of the score function, the bandwise smooth model is used, which makes use of the interpolation

of partial amplitudes (see Section 5.1.1). However, this model serves to estimate the expected

amplitudes of overlapping partials on condition that the overlap positions have been inferred

from a set of F0 hypotheses. In the iterative extraction process, F0s are consecutively extracted

and it is very difficult to predict the overlapping partials. In addition, harmonic instrument

sounds are of various resonance characteristics, which often results in boosted partials within

the resonance frequency ranges. In consequence, unsmooth envelopes shall be allowed. In order

to quantify the allowable degree of disturbance, the note-dependent tone models of harmonic

instrument sounds are proposed. The reason to use the note-dependent tone models is that the

underlying musical instruments are usually not known a priori in the problem of multiple-F0

estimation.

A tone model of a note is defined by its partial amplitude sequence, which can be learned

from a collection of musical instrument sound samples: McGill University Master Samples, Iowa

University Musical Instrument Samples, IRCAM Studio On Line and RWC Musical Instrument

Sound Database. For each sound sample, the partial sequences at each frame are extracted and

then weighted by its harmonicity to favor the estimates of good periodicity. The weighted partial

sequences are averaged for all the instruments playing at the same note. The note-dependant

tone models are trained for the notes from Ab1 to B6. The partial amplitudes of the models are

normalized with respect to the first partial, i. e., the fundamental. It is proposed to learn two

types of tone models for each note: low-fundamental model and high-fundamental model.

The low-fundamental model is of a weak fundamental, which represents a spectral envelope with

boosted partials at resonance frequencies higher than the first partial (see Figure 6.6(a)). On the

other hand, the high-fundamental model is of a strong fundamental, which represents a spectral

envelope with a fast decay for higher partials (see Figure 6.6(b)). The 1/k smooth model (see

Section 2.1.2) is a kind of the high-fundamental model.
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Figure 6.6: Two types of tone models for the note E3: (a) low-fundamental model; and (b)
high-fundamental model.

Given an observed partial sequence P and the related note, the likelihood of the low-

fundamental model ML and that of the high-fundamental model MH are compared. The more

likely one is selected for the calculation of the envelope disturbance measure. The likelihood of

a model is evaluated by means of the least-square error estimation. A smaller error between P

and M stands for a higher likelihood. By introducing a scaling factor sp for P, the least-square

error estimation minimizes ‖ sp ·P−M ‖2 with

sp =
P ·M
‖ P ‖2 (6.2)

Since the observed P may contain overlapping partials, the scaling factor is estimated from

the first three partials on the assumption that the overlaps at the first several partials have less

impact on the partial amplitudes and sp can be reasonably deduced.

Envelope disturbance measure

By comparing the observed partial sequence of a NHRF0 with the selected tone model, HRF0s

are going to be extracted according to an envelope disturbance measure. For a HRF0 hypothesis

at the kth harmonic of a NHRF0, the envelope disturbance (ED) is evaluated. ED is the

mean amplitude difference of the first five harmonics between the model and a HRF0 hypothesis,

considering only the partials that are larger than those of the tone model. The threshold of ED

is trained for each partial of a note, using harmonic instrument sound samples as a reference to

allow certain unsmoothness of the spectral envelopes. ED is similar to the spectral irregularity

proposed by Zhou (2006). Instead of using the tone models learned from harmonic instrument

sounds, he used the partial interpolation to estimate the spectral envelope. The issue of this

method is that the overlapping partials might be used for the interpolation to estimate the

“expected” envelope, which is the main reason why here the note-dependant models are used for

the extraction of HRF0s.

72

Chapter6/Chapter6Figs/f0env_model.eps


6.4 Evaluation

Following the same experiment setup for the joint estimation algorithm (see Section 5.4), the

three proposed methods for F0 candidate selection are evaluated in terms of multiple-F0 es-

timation error rate, predominant-F0 estimation error rate, the number of F0 candidates, and

the candidate selection error rate. Two window sizes, 186ms (see Figure 6.7 and Figure 6.9)

and 93ms (see Figure 6.8 and Figure 6.10), are tested. Compared to the iterative extraction

method, the two methods using HAR and PB, respectively, in general have lower error rates in

multiple-F0 estimation, predominant-F0 estimation, and F0 candidate selection. However, the

robustness seems to be gained from the increase of the number of F0 candidates. HAR in average

selects more than 30 candidates. PB has the best robustness but the number of candidates in-

creases with the increase of the polyphony. As described in Section 6.1, this drawback may arise

from the increasing number of partials, which results in more spurious candidates. The iterative

method ITR in general selects 15 candidates. Although the overall performance of ITR is worse,

it does reduce considerably the required computations, especially for the higher polyphony. For

example, in the case of five concurrent sources, ITR reduces more than one thousand times of

combinations compared to HAR. The price to pay is the increase of the error rate by only 1 ∼ 2%

for multiple-F0 estimation, which is considered acceptable for the related gain in efficiency.
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Figure 6.7: Multiple-F0 estimation error rates and predominant-F0 estimation rates for 186ms
window size.
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Figure 6.8: Multiple-F0 estimation error rates and predominant-F0 estimation rates for 93ms
window size.
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Figure 6.9: Average F0 candidate number and F0 candidate selection error rates for 186ms
window size.
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Figure 6.10: Average F0 candidate number and F0 candidate selection error rates for 93ms
window size.
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7
ESTIMATING THE NUMBER OF
CONCURRENT SOURCES

Of the three fundamental models in the multiple-F0 estimation problem, the modeling of the noise

is handled by the adaptive noise level estimation algorithm, and the modeling of a combination of

quasi-periodic sources is explored in the development of the joint estimation algorithm that takes

care of the overlapping partials. The last problem yet to study is the estimation of the number of

sources, called polyphony inference. The proposed strategy is to first estimate the maximal

polyphony and then to consolidate the F0 estimates according to two criteria: the explained

energy and the improvement on the spectral smoothness. In the polyphony inference stage, the

estimated noise level and the most probable hypothetical combinations lay a foundation for the

final verification of NHRF0s as well as HRF0s.

In this chapter, the polyphony inference algorithm is presented, which completes the multiple-

F0 estimation system. In order to evaluate the proposed system, a systematic method is proposed

to create a polyphonic music database. Then, the proposed system is evaluated for polyphony

settings ranging from one to six. The result is compared with a previous version which has been

evaluated in the public competition at MIREX 2007. Finally, a multiple-F0 tracking algorithm

for monodic instrument solo recordings is presented as a practical application.
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7.1 Polyphony Inference

7.1.1 Estimation of the maximal polyphony

Supposing that the inference of the polyphony starts from one hypothetical source and adds

gradually one source after another, the combination of the hypothetical sources should explain

more and more energy and adapt the resulting spectral envelopes to be smoother and smoother.

Theoretically, it is reasonable to expect the combination of the correct number of F0s to give the

highest score. Therefore, it is proposed to investigate how the score improves when hypothetical

sources are added consecutively. The artificially mixed polyphonic database (see Section 7.2.2)

is used for this inspection.

The correct polyphony is denoted by N ; the polyphony hypothesis is denoted by m. Given

the correct polyphony, the combinations of {m = 1, · · · ,m, · · · ,M,M + 1 = N + 1} sources

are evaluated by the score function. The best score of each hypothesis, denoted by Sm, is used

to calculate the score improvement. It is observed that as the polyphony hypothesis is in-

creased towards N , the resulting score in general becomes better, whereas the score improvement

gradually approaches zero. To illustrate the observed score improvements, they are modeled by

Gaussian distributions with respective means and variances (see Figure 7.1). The observation

does not come up to the expectation that the combination with the correct polyphony always

gives the best score. The combinations of M + 1 hypothetical sources in general give rise to a

better score than those of M hypothetical sources do. However, the score improvement can be

a useful criterion because an additional hypothetical source does not significantly improve the

score. In this way, the consecutive combination of increasing polyphony can be terminated by

setting a threshold ∆s for the score improvement when the polyphony hypothesis is increased

from M to M + 1. When SM+1 − SM < ∆s, the hypothesis M is considered the most plausible

number of sources. The polyphony is correctly inferred if M = N .

It is found that the Gaussian distributions do not have a unique model of Sm → Sm+1

for each polyphony. In consequence, setting a universal threshold for each correct polyphony

may not work properly. Another possibility could be to model the probability of a polyphony

hypothesis M as p(M) =
∏M

m=1 p(Sm → Sm+1) and choose the polyphony hypothesis that

maximizes the resulting probability. However, it is found that the parameters of the Gaussian

models depend on the diversity of harmonic instrument sounds and the way they are mixed.

Therefore, it is suggested to use the score improvement for the estimation of the maximal

polyphony. Beginning with the hypothesis m = 1, the score improvements of the polyphony

hypotheses {m = 1, · · · ,m, · · · ,M,M + 1} are consecutively evaluated till the last hypothesis

M + 1 is reached on condition that |SM+1 − SM | < ∆s. The hypothesis M is considered to

be the inferred maximal polyphony Mmax. In the current implementation, ∆s is set at 0.01 to

terminate the consecutive combination.
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Figure 7.1: Score improvement observations modeled by Gaussian distributions. Sm → Sm+1

represents the score improvement from the polyphony hypothesis m to m+1. Column (a) shows
the tests using the 186ms window size; column (b) shows the tests using the 93ms window size.
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7.1.2 Consolidation of multiple F0 hypotheses

Given the number of F0s, the four score criteria HAR, MBW, SPC and SYNC collectively

give a score to a hypothetical combination of F0s, which determines its ranking in all possible

combinations. When the polyphony is given, the combination scored the best gives the related

F0 hypotheses as the final estimate. The weighting parameters of the score criteria have been

optimized by the evolution algorithm such that the correct combination is ranked the best in

general. However, the polyphonic sample database used for training consists of signals mixed

with sources of equal energy. That is, the weighting parameters do not guarantee to perform well

when the underlying sources are of different energy. In fact, most errors in the test described

in Section 5.4 occur when the fixed weighting of score criteria does not guarantee to rank the

correct F0s the best. However, the correct F0s are generally ranked in the first several places.

Therefore, it is possible to infer the correct F0s from the combinations that are ranked in the

first several places. This consolidation process is important for the case in which the concurrent

sources are of different energy.

The polyphony inference algorithm is shown in the following pseudo code table. Given all

the top-five combinations for all polyphony hypotheses, the individual F0s are first listed in

order of their salience. The inference algorithm begins with the F0 hypotheses found in the

top-five combinations with polyphony hypothesis Mmax. Then, the best combination is going

to be inferred by iteratively validating the F0 hypotheses. Beginning with the most likely F0,

each F0 hypothesis is gradually added to verify their contributions to the explained energy and

the spectral smoothness. If an F0 hypothesis (to be added) is higher than any of the previously

selected F0 hypotheses, it shall either explain more energy or improve the envelope smoothness

of the HPS that have partials overlapping with its HPS. On the other hand, if an F0 hypothesis

(to be added) is lower than any of the previously selected F0s, it shall explain more energy.

Otherwise, it is considered a spurious source that is composed of noise. When an F0 hypothesis

meets the requirements for a valid source, it is removed from the F0 hypothesis list and added

to the set of the final estimates. For each polyphony hypothesis, the algorithm searches for the

matched combinations. When no matched combination is found, the validation process stops.

The polyphony is thus inferred along with the set of F0 estimates.

The individual salience of an F0 hypothesis is derived from the individual score that is defined

by the score function in which the combinatorial criteria are replaced by the individual criteria.

For an F0 hypothesis f within the cth-ranked combination of the polyphony m, the individual

score is

ςf,m,c = p1 · (1− efff,m,c) + p2 ·mbwf,m,c + p3 · spcf,m,c + p4 · syncf,m,c (7.1)

where efff,m,c is its effective salience. Reminded that the score function returns a score between

0 and 1 that is inversely proportional to the plausibility of a combination, “1-score” is used as

the salience measure. Accordingly, the salience of an F0 hypothesis is defined as

ςf =
1

Nf

∑

m,c

(1− ςf,m,c) · (1− Sm,c) (7.2)
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Algorithm: polyphony inference
input : The list of F0 hypotheses H = {F01,F02, · · · ,F0Q} in order of salience along

with the top-five combinations for all polyphony hypotheses {Cm}Mmax
m=1

output: The inferred polyphony M with the set of selected F0s F
Initialization of F = {F01} and M = 1
Initialization of residue ER = 1
Initialization of the F0 hypothesis set T = {F02, · · · ,F0Q} = {F0(j)}Jj=1 to combine with
F
while J > 0 do

for c = 1 to J do
if {F0c

⊕F}⋂ CM+1 then /* The matched combination is found */

if Eeff (F0c) > Enoise then /* The effective salience is larger than

noise salience */

if F0c overlaps lower F0s in F then
if max{∆MBW}Mm=1 > ∆MBWmodel then /* Smoother envelopes */

add F0c to F
update M and ER

break the For loop
else

if ∆ER > Enoise then /* reduction in residual salience larger

than noise salience */

add F0c to F
update M and ER

break the For loop
end

end

else /* F0c is the lowest */

if ∆ER > Enoise then
add F0c to F
update M and ER

break the For loop
end

end

end

end

end
if any F0 is added to F then

update T and J by removing the selected F0s
else

termination of the While loop
end

end
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Figure 7.2: MBW comparison between those of the original spectral envelopes and those of the
smoothed spectral envelopes. The two thin lines are second-order polynomial fitting the trained
MBW data.

The individual salience is first weighted by the combinatorial salience 1−Sm,c and then summed

for all the matched combinations of all polyphony hypotheses. Nf is the normalization factor.

In this way, an F0 hypothesis appearing in the combinations with higher score is considered

more important. And an F0 hypothesis appearing more frequently in combination with other

F0 hypotheses is considered more important as well.

Once the F0 hypotheses are ranked in order of salience, the validation process makes use

of two criteria, the explained energy and the improvement of spectral smoothness, to iteratively

add an F0 hypothesis to the set of final estimates. The explained energy is evaluated in terms

of the reduction in the residual salience, denoted by ∆ER. The residual salience is defined as

the sum of the peak salience of the remaining peaks that are not yet explained. ∆ER therefore

characterizes the energy explained exclusively by an F0 hypothesis. A NHRF0 hypothesis should

explain most sinusoidal peaks such that ∆ER is larger than the noise salience Enoise. The noise

salience is determined, at the end of the F0 candidate selection process (see Section 6.2), by

summing the peak salience of the peaks classified as noise. Enoise serves as the threshold for

the decrease in the residual salience ∆ER. In this case, an added F0 hypothesis is considered

valid if it explains the residual peaks with an amount more than the noise salience, that is,

∆ER > Enoise. This condition is important for the validation of a NHRF0 hypothesis because

its non-overlapping partials should explain a significant amount of salient peaks. Notice that

either a NHRF0 hypothesis or a HRF0 hypothesis should have its effective salience larger than

the noise salience (Eeff > Enoise).

The improvement of spectral smoothness is an important criterion for the validation of HRF0s

because adding a HRF0 usually improves the smoothness of the spectral envelopes of the ex-

tracted sources. Since an additional HRF0 tends to improve the resulting spectral smoothness

as well, it is necessary to put a constraint on the improvement of spectral smoothness. To

achieve this goal, it is proposed to observe the variation of the score criterion MBW. Notice
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that MBW is designed in a way that smoother envelopes result in smaller values. The improve-

ment of spectral smoothness is required to exceed what can be allowed for harmonic instrument

sounds. To learn the threshold of MBW as the allowed improvement of a spectral envelope,

selected instrument samples of RWC Musical Instrument Sound Database (Goto, 2003) are used.

Given an observed partial sequence of a harmonic sound, the hypothetical sources of the F0s

at the partial frequencies are considered the HRF0 hypotheses. For each HRF0 hypotheses, the

decrease of MBW, denoting ∆MBW, are evaluated. ∆MBW is the difference of MBW before,

denoted by mbwo, and after, denoted by mbws, smoothing out 1 the overlapping partials of a

HRF0 hypothesis. For each analysis instance, mbwo of the correct F0 and mbws of the HRF0

hypothesis that results in the maximal ∆MBW are retained. For each musical note, the cal-

culated mbws and mbwo are averaged for all the analysis instances of all the instruments (see

Figure 7.2). They are further modeled, as a function of the MIDI note numbers, using a second-

order polynomial. The threshold for the improvement of spectral smoothness is then defined as

∆MBWmodel = (mbwo −mbws)/mbwo.

7.2 Database Construction

To study and to evaluate a multiple-F0 estimation algorithm, a polyphonic database with a

representative corpus and verifiable ground truth is necessary. For speech signals, there exist

quite a few monophonic databases ready for generating polyphonic speech signals (Wu et al.,

2003; Roux et al., 2007). For music signals, there exist nowadays three types of polyphonic music

signals used as evaluation corpus:

1. Mixtures of monophonic samples

With a variety of musical instrument sound samples available, polyphonic signals can be

mixed either randomly (Klapuri, 2003; Yeh et al., 2005), or musically (Kitahara et al.,

2007; Li and Wang, 2007).

2. Synthesized music from MIDI files

Synthesized polyphonic music can be rendered from MIDI files by sequencers with sound

modules (Kashino and Tanaka, 1993; Dixon, 2000; Marolt, 2004; Sterian, 1999) or samplers

(Kashino et al., 1998).

3. Real recordings

Real recordings can be recordings of multi-tracks 2 or stereo/mono mix-down tracks (Marolt,

2004; Goto et al., 2002; Goto, 2003). Some use YAMAHA Disklavier for piano recordings

triggered by MIDI events (Poliner and Ellis, 2006; Monti and Sandler, 2002; Bello, 2003).

Provided that the selected single-F0 estimation algorithm is robust, the ground truth F0s of

mixtures of monophonic samples can be individually estimated from the respective monophonic

sources. The concern, however, is that the final mixtures may not have the same statistical

1A smoothed out partial is replaced by the amplitude interpolation of its adjacent partials.
2bass-db.gforge.inria.fr/BASS-dB/
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properties as those found in music. To increase the relevance of the test corpus for real world

applications, the corpus should take the musical structure into account. From this point of view,

synthesized music from MIDI files and real recordings are more suitable as corpora. Despite the

wide availability of music corpora, the establishment of their ground truth remains an issue.

7.2.1 Annotating real recordings

Nowadays, more and more evaluations of multiple-F0 estimation algorithms use real recordings of

mix-down tracks (Ryynänen and Klapuri, 2005; Kameoka et al., 2005b). The annotation process

usually starts with a reference MIDI file, followed by the alignment of the note onsets and offsets

with the observed spectrogram. Assuming that the notes in the reference MIDI file correspond

exactly to what have been played in the authentic performance, the annotation process is in fact

the score alignment with the recorded signals. In order to further discuss the issues concerning

the annotation of real recordings, a score alignment procedure is described in the following.

Given a reference MIDI file and a real recording of the same musical piece, the MIDI notes

are first aligned with the real recording automatically (Rodet et al., 2004; Kaprykowsky and

Rodet, 2006). Then, the details like note offs, slow attacks, etc., are manually corrected using

AudioSculpt (Bogaards et al., 2004). Innovative tools in AudioSculpt have been developed to

facilitate verification and modification of signal analysis and manual annotation (see Figure 7.3).

Automatically aligned MIDI notes are manually corrected according to the following procedure:

1. Overlay MIDI notes on the spectrogram as a piano-roll like representation. Adjust MIDI

note grid by tuning for the best reference frequency at note A4.

2. Generate time markers by automatic onset detection (Röbel, 2006) and adjust the proba-

bility threshold according to the observed spectrogram.

3. Verify and adjust note onsets detected around transient markers visually and auditorily.

In addition to the waveform and spectrogram, the harmonics tool, instantaneous spectrum

(synchronous to the navigation bar), etc., provide visual cues for the evolution of harmonic

components. The diapason allows accurate measurement and sonic synthesis at a specific

time-frequency point. Scrub provides instantaneous synthesis in a single FFT frame, which

allows users to navigate auditorily at any speed controlled by hand. Users can also listen

to arbitrarily shaped time-frequency zones.

4. Align markers automatically with the verified transient markers using magnetic snap.

5. If any inconsistency is found between the MIDI file and the real performance, missing notes

can be added and unwanted notes eliminated.

Despite all the powerful tools for manual annotation, timing ambiguities need to be resolved

based on subjective judgements. Above all, for reverberated recordings, reverberation extends

the end of notes and overlaps the following notes in time and in frequency. If one aims at finding

out when a musician stops playing a note, a scientific description of reverberation (Baskind,
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Figure 7.3: Screenshot of AudioSculpt during annotation showing MIDI notes, MIDI note grids,
onset markers, the instantaneous frequency spectrum and the harmonics tool.

2003) is necessary to identify the end of the playing. Due to reverberation, real recordings of

monodic instruments usually appear to be polyphonic, which requires a multiple-F0 tracking

(Yeh et al., 2006). However, the description of reverberation is not yet available for polyphonic

recordings in a reverberant environment. Alternatively, if one defines the end of a note as the end

of its reverberated part, the ambiguity occurs when (1) certain partials are boosted by the room

modes and extended longer than the others, and when (2) reverberation tails are overlapped by

the following notes and the end of reverberation is not observable.

If manual annotation/alignment is reliably done for non-reverberated recording, it is still

disputable in what accuracy one can extract multiple F0s as ground truth. Due to all the issues

discussed above, evaluation based on unverifiable reference data endangers the trustworthiness

of the reported performance. Therefore, it is believe that ground truth shall be derived by means

of an automatic procedure from the isolated clean notes of the polyphonic signals. However, real

recordings with clean and separate notes are almost impossible to carry out. One possible way

could be to record multiple tracks of solos in a non-reverberant environment and mix the tracks

afterwards. However, a solo track can be polyphonic for instruments like pianos or guitars, which

still raise the issues in annotation. Therefore, two methods are proposed to build polyphonic

music databases for the evaluation of multiple-F0 estimation algorithms. One follows the method

proposed by Klapuri (2003) which randomly mixes monophonic instrument samples to generate

polyphonic signals. The other is to render isolated notes from MIDI files to generate polyphonic

music. Both methods assure the access to monophonic signals of which the ground truth can be

reliably established and easily verified.
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7.2.2 Artificially mixed polyphonic samples

Polyphonic samples are generated by mixing monophonic samples of four databases: McGill

University Master Samples 1, Iowa University Musical Instrument Samples 2, IRCAM Studio On

Line 3 and RWC Musical Instrument Sound Database 4 (see Table 7.1). There are in general

three playing dynamics: ff, mf and pp. For certain instruments in the four databases, sounds

with different playing techniques are also recorded. For example, both playing straight and

playing vibrato are included for wind instruments. For bowed string instruments, recordings are

also made by string plucking (pizzicato). Although mallet percussion instrument sounds evoke

distinct pitches, they are excluded because of their unique partial structures.

Instrument Family Instruments
Reed bassoon, clarinet, oboe, saxophone, English horn, accordion, etc.
Flute flute, pan flute, piccolo, recorder, shakuhachi, organ, etc.
Brass cornet, French horn, trumpet, trombone, tuba, etc.
Plucked string archlute, guitar, harp, harpsichord, shamisen, etc.
Struck string piano
Bowed string violin, viola, cello, double bass, etc.

Table 7.1: Selected harmonic instruments from four musical instrument sample databases.

Four polyphonic mixture sets are generated: two-voice, three-voice, four-voice and five-voice

mixtures, labeled as TWO, THREE, FOUR and FIVE respectively. To mix M -voice polyphonic

samples, M out of twelve tones (C, Db, D, Eb, E, F, Gb, G, Ab, A, Bb and B) are preliminarily

assigned and then the related samples ranging from 50Hz to 2000Hz (corresponding to notes

from Ab1 to B6) are randomly selected to mix. Segments of good periodicity in monophonic

samples are selected and then mixed with equal mean-square energy. Around 1500-2000 samples

for each database are generated in a way that each combination of tones are of equal proportion.

The ground truth of multiple F0s is established by estimating the F0 of each monophonic sample

before mixing. The F0 search ranges are limited to one half tone around the related note.

Random mixing has the advantage of generating a great variety of polyphonic signals in a small

number of instances, which facilitates the training and the testing of a multiple-F0 estimation

algorithm.

7.2.3 Synthesized polyphonic music

In order to perform a musically relevant evaluation, synthesized polyphonic music more appro-

priate than random mixtures of monophonic samples. The biggest advantage of synthesized

music is that one can have access to every single note from which the ground truth can be estab-

lished. The argument against synthesized music is often that it is “non-realistic”, but few have

doubts about the ground truth. It seems that MIDI note event data is considered the ground

1http://www.music.mcgill.ca/resources/mums/html/index.htm
2http://theremin.music.uiowa.edu/MIS.html
3http://forumnet.ircam.fr/402.html?&L=1
4http://staff.aist.go.jp/m.goto/RWC-MDB/rwc-mdb-i.html
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truth, but it is not true. In fact, MIDI note off events are messages requesting the sound

modules/samplers to start rendering the end of notes, which usually extends the notes to sound

longer after note off. Thus, creating the reference data for the rendered audio signal from its

original MIDI file is not straightforward. The extended note duration depends on the settings of

sound modules or samplers, which is controllable and thus predictable. In order to retain each

sound source for reliable analysis as automatic annotation, a systematic method is presented to

synthesize polyphonic music from MIDI files along with verifiable ground truth.

There are several ways to synthesize a musical piece from a MIDI file: mixing monophonic

samples according to MIDI note on events, rendering MIDI files using sequencers with either

sound modules, software instruments, or samplers. The chosen approach is to render MIDI files

with samplers for the following reasons: (1) Sequencers and samplers (or Sound Bank players)

allow us to render MIDI files with real instrument sound samples into more realistic music. Many

efforts have been made to provide large collections of musical instrument sound samples such

as McGill University Master Samples , Iowa Musical Instrument Samples , IRCAM Studio On

Line and RWC Musical Instrument Sound Database. These sample databases contain a variety

of instruments with different playing dynamics and styles for every note in playable frequency

ranges, and they are widely used for research. (2) There exists an enormous amount of MIDI

files available for personal use or research and there is, therefore, a great potential for expanding

the database. Currently, the RWC Musical Instrument Sound Database as well as the Standard

MIDI Files (SMF) of RWC Music Database (Goto et al., 2002; Goto, 2003) are selected for

synthesis. There are a total of 3544 samples of 50 instruments in RWC-MDB-I-2001 and 315

high quality MIDI Files in RWC-MDB-C-2001-SMF, RWC-MDB-G-2001-SMF, RWC-MDB-J-

2001-SMF, RWC-MDB-P-2001-SMF and RWC-MDB-R-2001-SMF. (3) We are free to edit a

MIDI file for evaluation purposes to produce several versions from the original MIDI file. For

example, limiting the maximal concurrent sources by soloing the designated tracks, changing

instrument patches, mixing with or without drums and percussion tracks, etc.

Creating instrument patches

While continuous efforts are being made to manually annotate music scene descriptors for RWC

musical pieces (Goto, 2006), no attention is paid to the labeling of RWC Musical Instrument

Sound Database RWC-MDB-I-2001. Each sound file in RWC-MDB-I-2001 is a collection of

individual notes across the playing range of the instrument and a mute gap was inserted between

adjacent notes. The segmentation should not only separate individual notes but also detect

onsets for rendering the precise timing of MIDI note on events because harmonic sounds are

preceded by breathy or noisy regions for certain instrument samples. If the samples are segmented

right after the silence gap, they sometimes lead to noticeable delays when triggered by MIDI

events to be played by a sampler. These noisy parts in musical instrument sounds come from the

sound generation process. When instruments are played with lower dynamics (pp), it takes much

more time to establish the regimes of oscillation. In order to achieve precise onset rendering,

AudioSculpt is used to segment individual notes.

When receiving MIDI event messages, a sampler can render musical instrument samples
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Figure 7.4: Comparison of MIDI notes with the spectrogram of the rendered audio signal

according to the keymaps defined in an instrument patch. A sample can be assigned to a

group of MIDI notes called a keyzone. A set of keyzones is called a keymap, which defines the

mapping of individual samples to the MIDI notes at specified velocities. For each MIDI note of

a keymap, we assign three samples of the same MIDI note number but different dynamics (often

labeled as ff, mf and pp). The mapping of the three dynamics to 128 velocity steps is listed in

Table 7.2. In this way, an instrument patch includes all the samples of a specific playing style,

which results in more dynamics in the rendered audio signals 1.

dynamics MIDI velocity range

ff 100-127
mf 44-99
pp 0-43

Table 7.2: Mapping the playing dynamics to the MIDI velocity range

Rendering MIDI files into multiple monophonic audio tracks

Once the instrument patches are created, MIDI files can be rendered into polyphonic music by a

sequencer+sampler system. Direct rendering of all the tracks into one audio file would prevent

the possibility of estimating the ground truth using a single-F0 estimation algorithm. One might

then suggest rendering each MIDI track separately. However, this is not a proper solution, not

only for polyphonic instrument tracks (piano, guitar, etc.) but also for monodic instrument

tracks.

To discuss the issues, one example is illustrated in Figure 7.4. The MIDI notes are extracted

from the flute track of Le Nozze di Figaro in RWC-MDB-C-2001-SMF. After rendering them by a

sequencer+sampler system using the flute samples of RWC-MDB-I-2001, the spectrogram of the

rendered audio signal is shown along with the MIDI notes. Each rectangle represents one MIDI

1In this work, two playing styles are used: normal and pizzicato.
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note, with time boundaries defined by note on and note off, and with frequency boundaries

defined by a quarter tone from its center frequency. It is observed that even if the MIDI note

events do not overlap, the rendered signals may still overlap in time as well as in frequency,

depending on the delta time between the note events and the release time parameter of the

instrument patch.

In order to access individual sound sources for verifiable analysis, it is necessary to prevent

the overlaps of concurrent notes as well as those of consecutive notes. Therefore, each MIDI

track is split into tracks of separate notes such that the rendered signals do not overlap. Given

the release time setting of an instrument patch, concurrent and consecutive notes in a MIDI

track can be split into several tracks under the following condition:

Tnote on(n) ≥ Tnote off(n− 1) + Trelease (7.3)

where Tnote on(n) is the note on time of the current note, Tnote off(n− 1) is the note off time

of the previous note, and Trelease is the release time setting of the instrument patch. In this way,

the rendered notes are guaranteed not to overlap one another and individual sound sources can

always be referred to whenever necessary. When splitting a MIDI file into several, the control

messages 1 are retained in the split tracks such that the rendered notes are exactly the same as

the notes rendered from the original MIDI file (see Figure 7.5).

instrument track K−1
. . . 

. . . . . . 

tempo track

MIDI note events

control messages

tempo track

MIDI note events

instrument track 1

control messages

tempo track

MIDI note events

control messages

tempo track

MIDI note events

instrument track K

control messages

tempo track

MIDI note events

note track 1

control messages

tempo track

MIDI note events

note track N−1

control messages

tempo track

MIDI note events

note track N

control messages

Figure 7.5: Splitting MIDI files into several containing tracks of separate notes

Once MIDI notes are rendered into non-overlapping samples, the ground truth can be estab-

lished from the analysis of each rendered note sample. The ground truth F0 should be annotated

for each analysis frame. Given the MIDI note number, the reference F0 can be calculated as

1Channel messages such as pitch bend are included.

89

Chapter7/Chapter7Figs/split_midi.eps


Figure 7.6: Ground truth of multiple F0 tracks in which the F0s of each note signal are estimated
by the YIN algorithm.

follows:

Fnote =
FA4

32
· 2(MIDI note number−9)/12 (7.4)

It is not always correct to calculate Fnote with a fixed FA4 (for example, 440Hz) because the

tuning frequency FA4 may differ; moreover, recorded samples may not be played in tune. As

the example illustrated in Figure 7.4, the MIDI notes are placed at center frequencies related to

the tuning frequency FA4 = 440. The D6 note around 1200 Hz either (1) has a higher tuning

frequency, or (2) is not played in tune.

In order to obtain precise F0s as ground truth, F0 estimation is carried out twice for each

sample: a coarse search followed by a fine search. The coarse search uses Fnote with FA4 = 440

for a frequency range Fnote ·[0.6 1.4]. Then, the search range is limited to one semi-tone, centered

at the energy-weighted average of the coarsely estimated F0s. The YIN algorithm is suggested

for the estimation of the F0 because it has been evaluated to be robust for monophonic signals

(de Cheveigné and Kawahara, 2002) and it is available for research use. A window size of 93ms

is used for the analysis of the reference F0s. For each F0 track of a sample, only the parts of good

periodicity serve as ground truth. The aperiodic parts at the transients and near the end of notes

are discarded by a threshold of the aperiodicity measure in the YIN algorithm. The estimated

F0s of individual note samples collectively establish the ground truth of the synthesized music

signal (see Figure 7.6).
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7.3 Evaluation

To evaluate the presented multiple-F0 estimation system, the evaluation metrics proposed by

Poliner and Ellis (2006) is used, which takes into account the estimation of the number of sources.

In order to formulate all the measures of the evaluation metrics, it is necessary to describe some

terms beforehand. Nsys denotes the estimated polyphony reported by the estimation system;

Nref denotes the ground truth polyphony; Ncorr denotes the number of correctly estimated F0s,

Nmiss denotes the number of missing F0s, Nsubs the denotes the number of substitution F0s, and

Ninst denotes the number of insertion F0s. Prior to listing the formulates of the measures, it is

simple to investigate the estimation results by two cases (see Table 7.3).

Nsys > Nref Nsys < Nref

0 6 Ncorr 6 Nref 0 6 Ncorr 6 Nsys

Nmiss = 0 Nmiss = Nref −Nsys

Nsubs = Nref −Ncorr Nsubs = Nsys −Ncorr

Ninst = Nsys −Nref Ninst = 0

Table 7.3: Error measures for two cases

Ncorr is what often called True Positives, which is bounded by min(Nsys, Nref ). Nmiss is

what often called False Negatives, which is non-zero only if Nsys < Nref . The rest of the

errors are often called False Positives, which include both Nsubs and Ninst. Ninst is non-zero

only if Nsys > Nref . By summarizing the two cases, the measures of the evaluation metrics can

be formulated, for T analysis frames, as follows:

1. Total error

Etot =

∑T
t=1 max(Nref (t), Nsys(t))−Ncorr(t)

∑T
t=1 Nref (t)

(7.5)

2. Missing error

Emiss =

∑T
t=1 max(0, Nref (t)−Nsys(t))

∑T
t=1 Nref (t)

(7.6)

3. Substitution error

Esubs =

∑T
t=1 min(Nref (t), Nsys(t))−Ncorr(t)

∑T
t=1 Nref (t)

(7.7)

4. Insertion error

Einst =

∑T
t=1 max(0, Nsys(t)−Nref (t))

∑T
t=1 Nref (t)

(7.8)
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Figure 7.7: Polyphony distribution of the synthesized music database

5. Recall

Rcl =
Ncorr

Nref
(7.9)

6. Precision

Prs =
Ncorr

Nsys
(7.10)

7. Overall Accuracy

Acc =
Ncorr

Ncorr + Nmiss + Nsubs + Ninst
(7.11)

The proposed multiple-F0 estimation system is evaluated by two polyphonic databases con-

taining (1) sources with equal energy and (2) sources with different energy. In the first case,

the polyphonic samples mixed from monophonic sources with equal energy is used (see Section

7.2.2). The results of the estimated polyphony, the accuracy rates and the error rates are shown

in Figure 7.8, 7.10, and 7.11, respectively, for the polyphony up to 5. In the second case, 26 pieces

of synthesized music (see Section 7.2.3) are used. The results of the estimated polyphony, the

accuracy rates and the error rates are shown in Figure 7.9, 7.12, and 7.13, respectively. Although

the number of concurrent notes may increase to more than 10 (see the polyphony distribution in

Figure 7.7), the results of polyphony up to 6 are the main concerns. In both cases, concurrent

sources related to the same note are regarded as one single source. An example of the estimation

F0s of a piece of synthesized music is demonstrated in Figure 7.15.
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When the sources are of equal energy, the estimated polyphony has a tendency to overesti-

mation for lower polyphony (M < 5). This is probably due to the energy normalization process

while mixing monophonic samples into polyphonic ones, which boosts the spurious spectral com-

ponents and causes additional F0 hypotheses to be estimated as extra sources. In addition,

∆MBWmodel is learned as the average of various spectral envelopes. This threshold is prob-

ably too low for the artificially mixed polyphonic samples in which the stationary parts right

after the onsets are selected and the spectral envelopes are usually less smooth due to several

strong partials boosted by the resonances. When the energy of the sources varies, the estimated

polyphony has a distinct peak at the correct polyphony for the low polyphony but less precise

for the polyphony higher than four (M > 4). The tendency to overestimation in the first case is

alleviated in the second case (compare Figure 7.8 and Figure 7.9). The two thresholds, Enoise

and ∆MBWmodel, seem to work well for the polyphony up to four. However, for the polyphony

higher than four, the performance starts to decline. This could be due to the weak sources that

are not detectable by either the explained energy or the improvement of spectral smoothness,

which causes quite a few missing F0s. When a weak source of HRF0 is totally buried in a strong

source of the related F0, it is the most difficult to extract the “buried” HRF0.

To further investigate the performance of the proposed system, we evaluate the accuracy rate

with the related error rates. In the first case, the overall accuracy is 72.77%. In the second case,

the overall accuracy is 64.75%. The decline in accuracy due to the varying energy is about 10%.

The recall rate is also about 10% lower compared to that in the first case. There are several

issues related to the performance degradation when the energy of sources varies. In addition

to the issues related to Enoise and ∆MBWmodel, the polyphony inference algorithm needs to

be improved because no care is taken to remove an incorrectly inferred F0 that is reasonably

added in the inference process. The polyphony inference algorithm shall adaptively remove a

less probable F0 after several iterations if the resulting combination does support it with high

probability.

The performance of the proposed multiple-F0 estimator can also be characterized by the

likelihood function p(M |M̂) where M̂ is the estimated polyphony (see Figure 7.14). That is,

given the estimated polyphony M̂ , it is possible to reason about how likely the true polyphony

M can be.

MIREX 2007

The proposed system has participated in MIREX (Music Information Retrieval Evaluation eX-

change) 2007 for Multiple Fundamental Frequency Estimation which is the first ever evaluation

of many existing multiple-F0 estimation algorithms. Since the proposed system does not involve

the tracking of F0s across frames, it participated in the first task: frame-by-frame evaluation.

The evaluation database contains woodwind quintet (French horn, clarinet, bassoon, flute and

oboe) recordings and synthesized music using RWC music instrument samples (clarinet, violin,

cello, electric bass, electric guitar and saxophone) and RWC MIDI files. Four pieces of music

are selected to generate the testing corpora by mixing two to five solo tracks, which sums up to

28 pieces. The ground truth of the woodwind quintet recordings is annotated by YIN for each
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Figure 7.8: Estimated polyphony for sources with equal energy
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Figure 7.9: Estimated polyphony for sources with different energy.
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Figure 7.10: Accuracy, recall and precision results for sources with equal energy.
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Figure 7.11: Error results for sources with equal energy.
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Figure 7.12: Accuracy, recall and precision results for sources with different energy.
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Figure 7.13: Error results for sources with different energy.
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Figure 7.14: The likelihood of the estimated polyphony. Given the estimated polyphony M̂ , the
likelihoods of the true polyphony M from 1 to 9 are illustrated.
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Figure 7.15: An example of the estimated F0s of a piece of synthesized music. The crosses are
the estimated F0s, and the rectangle shows the time-frequency boundaries of the ground truth
notes.

solo recording track. The ground truth of the synthesized music is also annotated by YIN for

each separately rendered notes. An evaluated system is required to report the estimated F0s

every 10ms. There are 12 participants who have submitted 16 systems in total. The partici-

pants, their abbreviations and the proposed methods are listed in Table 7.4. To facilitate the

comparison, the ranking of the overall accuracy is shown in Figure 7.16, and the overall accuracy

for different number of instruments is shown in Figure 7.17. Notice that the number of instru-

ments does not stand for the true polyphony but is still representative of the complexity of the

testing pieces. The proposed multiple-F0 estimation system (Yeh, 2007) has been ranked in the

second place. The submitted system, called the MIREX version, has been tuned to favor lower

polyphony, achieving an average accuracy at 58.9%. Large degradation in the five-instrument

mixtures has been found to be related to the yet-to-improve implementation of the polyphony

inference algorithm.

In order to compare the MIREX version with the thesis version, the MIREX version is

evaluated by the same synthesized music database used for the evaluation of the thesis version.

The average accuracy rate of the thesis version is about 8% better than that of the MIREX

version (see Figure 7.18). Above all, the thesis version improves significantly the accuracy in the

estimation for the polyphony higher than 3.
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team ID team members method

AC A. Cont NMF with sparsity constraint

CC C. Cao, M. Li, J. Liu and Y. Yan subharmonic sum + harmonic structure tracking

CY C. Yeh feature combination of F0 candidates

EV E. Vincent, N. Bertin and R. Badeau NMF with harmonicity constraint

KE K. Egashira, H. Kameoka and S. Sagayama Harmonic Temporal Structured Clustering

PE G. Poliner and D. P. W. Ellis Support Vector Machine

PI A. Pertusa and J. M. Inesta feature combination of F0 candidates

PL P. Leveau sparse decomposition with instrument models

RK M. Ryynänen and A. Klapuri auditory model + HMM tracking

SR S. A. Raczynski, N. Ono and S. Sagayama NMF with harmonicity constraint

VE V. Emiya, R. Badeau and B. David Maximum likelihood based on High Resolution analysis

ZR JR. Zhou and J. D. Reiss Resonator Time-Frequency Image + error pruning

Table 7.4: The participants of MIREX’07 Multiple-F0 estimation and their proposed methods.

 RK CY ZR PI1 EV2 CC1 SR EV1 PE1 PL CC2 KE2 KE1 AC2 AC1 VE
0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 7.16: MIREX’07 result: the accuracy ranking of the evaluated systems. The proposed
system CY is ranked in the second place.
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Figure 7.17: MIREX’07 result: the accuracy rates for each number of mixed instrument tracks.
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Figure 7.18: Comparison of the accuracy rates between the MIREX version and the thesis version.
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7.4 Multiple F0 Tracking in Solo Recordings of Monodic Instr u-

ments

The algorithms developed so far have been focused on the frame-based analyses. In order to build

continuous F0 trajectories, one often makes use of the information across the frames. Following

the HMM proposed by Tokuda et al. (1999), Wu et al. (2003) models the F0 state space as a

union state space Ω consisting of all the hypotheses of the concurrent number of sources

Ω = Ω0 ∪ Ω1 ∪ Ω2 ∪ · · ·ΩM (7.12)

where Ωm represents the state with m sources and M is the maximal polyphony. The concept

of this tracking model is to evaluate all hypothetical combinations of {Sm}Mm=1 and to search

for the optimal sequence of the state space throughout the observation spaces. For the proposed

multiple-F0 estimation system, the observations can be represented by the probabilities generated

by all the hypothetical combinations. Although Wu et al. (2003) applied this model to the special

case in which M = 2, this tracking mechanism is complicated for a general case. Despite the

limitation of the performance for the polyphony higher than six, the presented system can be

applied to a special case of multiple-F0 tracking: monodic instrument solo recordings.

Single-F0 estimators are often used to analyze the solo recordings of monodic instruments,

assuming that there is only one F0 present in the observed signal. Since the recordings are

often done in a reverberant environment, the use of single-F0 estimation algorithms is not ap-

propriate because reverberation prolongs the note duration, resulting in a polyphonic signal. In

consequence, a single-F0 estimator may tend to favor a subharmonic which explains both the

current note and the reverberation of the preceding notes. Baskind and de Cheveigné (2003)

applied a double-F0 estimator (an extension of YIN) to the task of F0 tracking for monodic

instrument recordings. Significant improvement in robustness of F0 estimation of reverberant

sounds has been reported, which encourages a multiple-F0 tracking approach to this problem.

On the assumption that there is one monodic instrument playing, the observed signal can be

modeled as a predominant harmonic source plus the reverberant parts of the preceding notes

and the background noise. Accordingly, it is proposed to first decode the predominant-F0 track

from a set of hypothetical combinations, and then to use the less-dominant F0 hypotheses to

elicit the continuity of the notes in the predominant-F0 track.

The proposed F0 tracking system is composed of three parts (see Figure 7.19). In each analysis

frame, multiple-F0 estimation provides the list of the top-ranked combinations of F0 hypotheses.

F0 tracking can thus be considered the decoding of the optimal path through the trellis structure

which consists of the hypothetical combinations across the frames (see Figure 7.20). Because it

is difficult to define the transition probability between two hypothetical combinations that are

of different polyphony hypotheses, it is proposed to decode first the predominant-F0 track based

on the probability of individual F0 hypothesis. Then, the secondary F0s, which are assumed to

be the reverberant parts, can be tracked by extending the notes in the predominant-F0 tracks.

In this case, polyphony inference (see Section 7.1) is implicitly carried out by the tracking
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mechanism.
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Predominant
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Figure 7.19: Overview of the F0 tracking system for monodic instrument solo recordings.
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Figure 7.20: Decoding the optimal multiple-F0 path in the trellis structure of hypothetical
combinations. Each hypothetical combination is denoted as {F0i

m,c} (where m ranges from 1 to
the maximal polyphony) for the cth top-ranked candidate combination at frame i.

Predominant-F0 tracking

For solo recordings of monodic instruments, the predominant F0s are related to the monophonic

melody line being played. As long as the reverberation of preceding notes is less dominant than

the current note, taking the most significant F0 as the predominant F0 is generally accepted.

Given the individual probabilities of F0 hypotheses (see eq.(7.2)) as observations, the best state

sequence of predominant F0s is inferred by a two-stage tracking method:

1. Forward connection between frames

In the first stage, the connection is made between the F0 hypotheses in two consecutive

frames. For each F0 hypothesis, the frequency difference allowed for the connection is one
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half tone. For every F0 hypothesis, the connection that produces the highest product of

individual probabilities is kept for the next stage.

2. Track construction

An F0 track can be defined by the locally connected F0s. However, there are often several

“holes” in-between tracks, where F0 hypotheses should be filled in to establish a correct

track. These holes represent the missing F0 hypotheses, which are often observed when

the onset of one note disturbs the quasi-stationary parts of the other notes. This issue is

addressed by linear prediction of F0 tracks, a technique similar to Lagrange et al. (2004)’s

method. To reconstruct a broken track, a backward/forward search based on linear pre-

diction is applied to each pair of adjacent tracks that are close in time and in frequency.

Secondary-F0 tracking

Once the predominant-F0 track is decoded, the secondary F0s can be tracked by extending the

notes in the predominant F0 track. To track the reverberant parts of the predominant-F0 tracks,

the combinations containing the current predominant F0 and the preceding predominant F0s are

used to establish the secondary F0 tracks. As long as the effective salience of a secondary F0 is

larger than a pre-defined threshold, it is considered a part of the reverberation.

Testing examples

To demonstrate the proposed tracking algorithm, two solo recordings are tested: bassoon and

violin. For the bassoon solos, the proposed method is compared with the single-F0 estimator YIN.

YIN produces subharmonic errors in the frames where the reverberant parts of the preceding

notes are strong in energy (see Figure 7.21). This demonstrates the difficulty of F0 tracking for

monodic solo recordings, which can be barely handled by a single-F0 estimator. In the second

example, a violin solo, the proposed method yields promising estimates for the fast arpeggios

of which the reverberant parts are well tracked, too. The challenge is to track successive notes

playing in harmonic relations, especially in an octave relation. When the reverberation of the

preceding note is still strong and the current note is, for instance, one octave above, the current

note is mixed with the reverberation tail of the preceding note, which causes octave ambiguity.
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Figure 7.21: Comparison of the proposed predominant-F0 estimator and YIN, using a Mozart’s
bassoon solo recording for the test.
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Figure 7.22: Multiple-F0 tracking test of a Bach’s violin solo recording.
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8
CONCLUSIONS AND PERSPECTIVES

8.1 Conclusions

A frame-based multiple-F0 estimation system has been presented to analyze music sound sig-

nals. The approach is based on joint evaluation of F0 hypotheses, following three guiding prin-

ciples related to the physical properties of harmonic instrument sounds: harmonicity, spectral

smoothness and synchronicity. The algorithms concerning noise estimation, joint evaluation of

F0 hypotheses, and polyphony inference have been developed, which cope with the three fun-

damental models in the problem of multiple-F0 estimation: the noise model, the source model

and the source interaction model. The proposed algorithms are designed to target the extraction

of either NHRF0s (non-harmonically related F0s) or HRF0s (harmonically related F0s). The

main contributions made in this thesis can be summarized with respect to four aspects: noise

estimation, overlapping partial treatment, formulation of the guiding principles and, database

construction.

Contrary to the usual assumptions that noise is white Gaussian, it is proposed to model

the noise magnitude distribution by a succession of Rayleigh distributions, each of which is a

function of frequency. An adaptive noise level estimation algorithm has been developed which

neither includes additional information from the neighboring frames or pure noise segments,

nor makes use of harmonic analysis. The bias of the estimated noise level are around 5%; the

variance of the estimated noise level are around 25%− 30%. The estimated noise level provides

a probabilistic threshold for the classification of spectral peaks into sinusoids and noise. It is

considered the most important feature for extracting the correct number of NHRF0s.
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The development of the joint estimation algorithm has focused on the treatment of over-

lapping partials. The proposed overlap treatment reallocates the overlapping partials to one or

several sources such that the ambiguity in the related HPS (hypothetical partial sequences) are

removed. It is believed to be the key treatment for a reliable evaluation of hypothetical sources.

Based on the three guiding principles of harmonic instrument sounds, four score criteria

have been proposed: harmonicity, mean bandwidth, spectral centroid and synchronicity. The

synchronicity criterion has been derived from the single-frame observation, which is different

from the usual technique which makes use of the information across frames. The four criteria

are linearly combined to yield a score function, which ranks all possible combinations among

F0 candidates. In the case in which the number of F0s is known, the performance of the joint

estimation algorithm is encouraging and competitive to the existing methods. The efficiency

concern has been discussed by the evaluation of three methods for F0 candidate selection. The

method that iteratively extracts first NHRF0s and then the HRF0s has reduced more than

one thousand times of combinations to calculate, compared to the method that simply uses a

threshold of the harmonicity criterion. Nevertheless, the accuracy of multiple-F0 estimation is

brought down by only 1− 2%.

One essential problem in the research of multiple-F0 estimation, often not underlined in the

previous studies, is that there is no polyphonic music database (corpus+ground truth) avail-

able. Therefore, a systematic method has been proposed for the creation of a polyphonic music

database. The idea is to make use of the large numbers of existing MIDI files and music in-

strument sound samples to render synthesized polyphonic music. Care has been taken to split

MIDI tracks to ensure that separate notes do not overlap after rendering. In this way, ground

truth can be more reliably established by a single-F0 estimator. The proposed methodology is

reproducible, extensible and interchangeable. Most importantly, the ground truth is verifiable.

A polyphony inference algorithm has been developed, based on the noise estimation algo-

rithm and the joint estimation algorithm. The maximal polyphony is first estimated, and a

consolidation process is then carried out which makes use of two criteria: the explained energy

and the improvement in spectral smoothness. Two thresholds related to the criteria are learned

from music instrument sound samples to avoid spurious detections. NHRF0s which explain less

energy than the noise energy are not considered valid; HRF0s overly smoothing the envelopes

are not considered valid. Evaluations have proved the proposed system to be one of the best

among the existing systems. The average accuracy rate is about 65%.

8.2 Perspectives

The proposed F0 estimation system can be improved in two aspects: (1) simplification of the

frame-based system and (2) inclusion of a tracking mechanism as post-processing. The joint

evaluation part and the polyphony inference part could be combined in an iterative combi-

nation/consolidation manner. Given a list of F0 candidates, one may iteratively evaluate the

validity of an added F0 hypothesis in a hypothetical combination. To develop an efficient and

robust algorithm, a strategy to, for each iteration, replace less likely F0 hypotheses with more
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probable ones is necessary.

The other way to improve the frame-based estimation system is to incorporate a tracking

mechanism. F0 tracking in a joint manner is complicated. Hence, it might be simpler to establish

the probable F0 trajectories first and then prune the spurious sources afterwards. With the

individual probability of each F0 hypothesis and the frequency proximity between F0 hypotheses,

it is possible to collect individual F0 hypotheses into candidate trajectories. Three issues

need to be addressed to yield the final tracking result: (1) connection of separate trajectories

(belonging to one source stream) due to missing F0s (2) verification of octave trajectories and

(3) refinement of the onset/offset positions.

In this thesis, the impact of concurrent percussive instrument sounds has not been studied.

Mallet percussion instruments evoke distinct pitch but they have special partial structures which

require specific spectral models to deal with. The less-pitched percussion instruments like drums

introduce strong transient components. When drum sounds overlap with concurrent harmonic

sounds, the partials of the harmonic sounds are highly disturbed, which causes quite a few

estimation errors for a frame-based analysis system. One way to analyze polyphonic music

with drums is to perform drum identification and separation before multiple-F0 estimation is

performed. If the interference of drum sounds can not be effectively attenuated, the inference of

ghost F0 hypotheses is a possible solution to reconstruct the “broken” trajectories disturbed by

drum sounds.

The finds of this study have a lot of potential for various applications. The major contribu-

tions of the study include at least the following: First, the estimated noise level is representative

of the instantaneous noise spectrum, which can serve as a new feature for signal analysis. By

smoothing the varying noise levels across frames, the noise spectrogram can be estimated, from

which a relative spectrogram can be derived. The relative spectrogram can serve as a new

representation of the signal with enhanced sinusoidal components. Noise level estimation can

also be applied to transient detection because the noise level usually rises when strong attacks

occur. By combining noise level estimation with harmonic analysis, a robust onset detection

could be achieved. Similar techniques can also be applied to the voicing determination of speech

signals. The unvoiced part of speech contains turbulence and is thus noise-like. Therefore, it

should be detected when the HNR (harmonic-to-noise ratio) is low.

Second, the study of overlapping partials is helpful to polyphonic signal analysis and source

separation. The proposed overlap treatment uses the interpolated amplitudes to estimate the

overlapping partial amplitudes, which appears to work properly for the current task. An extensive

study of the overlap model can initiate a more refined method for the inference of overlapping

partial amplitudes. This can be useful for, for instance, a more precise separation of concurrent

sources.

Third, the proposed method for creating polyphonic music database can be extended to

other MIR (Music Information Retrieval) tasks, such as melody extraction, key estimation, beat

tracking, tempo extraction, drum detection, chord detection, onset detection, score alignment,

and source separation. Although the proposed method uses synthesized music, it can be easily

integrated into multi-track recordings of monodic instruments and singing voices. As for the
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ground truth of the beats and the tempos, they can be programmed in MIDI files to achieve

a realistic groove. By analyzing the MIDI notes, the ground truth of chords can be extracted.

This method is particularly valuable for the MIR tasks that require timing precision.

Most of the research on multiple-F0 estimation aims at using it as the core component

within an automatic music transcription system which integrates low-level analyses into a high-

level representation as a musical score. The development of an automatic music transcription

system involves a lot more research topics: key estimation, tempo/meter estimation, instrument

recognition and musicological model. In addition to automatic music transcription, a multiple-F0

estimation algorithm has many more practical applications, in the context of polyphonic signals,

such as musical instrument recognition, chord estimation and source separation.
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A
The Magnitude Distribution of White
Gaussian Noise

Consider a narrow band noise process n(t) = r(t)ejφ(t) = x(t)+jy(t). Assuming that the real part

x(t) = r(t) cos(φ(t)) and the imaginary part y(t) = r(t) sin(φ(t)) are (1) Gaussian distributed

with zero mean and variance σ, and (2) independent, the joint probability density function is

p(x, y) = p(x) · p(y) =
1

2πσ2
e−(x2+y2)/2σ2

Using the change of variable x2 + y2 = r2, p(x, y) can be expressed by

p(r, φ) =
r

2πσ2
e−r2/2σ2

The marginal distributions can thus be derived:

p(φ) =

∫ ∞

0
p(r, φ)dr =

1

2π
, for φ ∈ [0, 2π]

p(r) =

∫ 2π

0
p(r, φ)dφ =

r

σ2
e−r2/2σ2

, 0 ≤ r <∞

where the phase φ is uniformly distributed and the magnitude r(t) is Rayleigh distributed.
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B
Spectral Descriptors for
Sinusoid/Non-Sinusoid Classification

Röbel and Zivanovic (2004) proposed four spectral peak descriptors to classify spectral peaks.

The descriptors are designed to deal with non-stationary sinusoids. In this thesis, three descrip-

tors, Normalized Bandwidth Descriptor (NBD), Duration Descriptor (DD) and Fre-

quency Coherence Descriptor (FCD) are selected to classify sinusoidal/non-sinusoidal peaks

(see Table B.1). NBD and DD of a spectral peak are derived from bandwidth and duration of a

signal (Cohen, 1995). FCD is based on the reassignment operators (Auger and Flandrin, 1995).

The thresholds of the descriptors can be adaptively determined (Zivanovic et al., 2007).

Normalized Bandwidth

Consider a signal s(t) with the related spectrum S(ω). The spectral content of a signal can be

characterized by its mean frequency and its bandwidth. The mean frequency indicates the

frequency at which the signal energy is concentrated:

ω̄ =

∫

ω · |S(ω)|2dω
∫

|S(ω)|2dω
(B.1)
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descriptor formula

normalized bandwidth NBD =
P

k(k−ω̄)2|X(k)|2

L
P

k |X(k)|2 where ω̄ =
P

k k|X(k)|2
P

k |X(k)|2

duration DRD =
√

|X(k)|2
P

k |X(k)|2
∑

k[A
′(k)2 + (gd(k)− t̄)2]

where gd(k) and A′(k) are the real and imaginary part of Xt(k)X∗(k)
|X(k)|2

and t̄ =
P

k gd(k)|X(k)|2
P

k |X(k)|2

frequency coherence FCD = argmin
k

Xd(k)X∗(k)
|X(k)|2 for k ∈ all bins in one peak

Table B.1: Spectral descriptors for the spectral peak classification. The summation of k is with
respect to all frequency bins within a spectral peak.

The bandwidth B gives an idea of how the energy of the signal is distributed around its mean

frequency

B =

√

∫

(ω − ω̄)2 · |S(ω)|2dω
∫

|S(ω)|2dω
(B.2)

which is calculated in terms of the square root of the second central moment of energy density.

The normalized bandwidth descriptor NBD is derived for a spectral peak from calculating the

bandwidth around a single peak and normalizing it with the spectral width L 1 of the peak.

NBD is meant to evaluate the energy concentration about the mean frequency.

Duration

The mean time indicates a signal’s center of gravity in the time domain:

t̄ =

∫

t · |s(t)|2dt
∫

|s(t)|2dt
(B.3)

where |s(t)|2 denotes the instantaneous power. The duration of a signal measures whether the

energy density concentrates around its mean time:

T 2 =

∫

(t− t̄)2|s(t)|2dt
∫

|s(t)|2dt
(B.4)

1L is defined between two neighboring local minima around the peak.
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In order to calculate the duration in the frequency domain, it is necessary to express t̄ in terms

of S(ω).

t̄ =
1

∫

|S(ω)|2dω

∫ ∫ ∫

tS∗(ω)ej(ω′−ω)tS(ω′)dωdω′dt

= − 1

j
∫

|S(ω)|2dω

∫ ∫ ∫

S∗(ω)
∂

∂ω
ej(ω′−ω)tS(ω′)dtdω′dω

= − 2π

j
∫

|S(ω)|2dω

∫ ∫

S∗(ω)
∂

∂ω
δ(ω′ − ω)S(ω′)dω′dω

= − 2π

j
∫

|S(ω)|2dω

∫

S∗(ω)
∂

∂ω

1

2π
S(ω)dω

=
1

∫

|S(ω)|2dω

∫

S∗(ω)(−1

j

d

dω
)S(ω)dω

(B.5)

Denoting S(ω) = A(ω)ejφ(ω), the mean time can be further expressed in terms of S(ω)

t̄ =
1

∫

|S(ω)|2dω

∫

S∗(ω)j(A′(ω)ejφ + jφ′(ω)S(ω))dω

=
1

∫

|S(ω)|2dω

∫

[−φ′(ω) + j
A′(ω)

A(ω)
]|S(ω)|2dω

= − 1
∫

|S(ω)|2dω

∫

φ′(ω)|S(ω)|2dω

(B.6)

and the duration can thus be expressed as

T =
1

∫

|S(ω)|2dω

∫

S∗(ω)(−1

j

d

dω
− t̄)2S(ω)dω

=
1

∫

|S(ω)|2dω

∫

|(1
j

d

dω
+ t̄)S(ω)|2dω

=
1

∫

|S(ω)|2dω

∫

|1
j

A′(ω)

A(ω)
+ φ′(ω) + t̄|2A2(ω)dω

=
1

∫

|S(ω)|2dω

∫

(
A′(ω)

A(ω)
)2A2(ω)dω +

∫

(φ′(ω) + t̄)2A2(ω)dω

=
1

∫

|S(ω)|2dω

∫

(
A′(ω)

A(ω)
)2A2(ω)dω +

∫

(gd(ω)− t̄)2A2(ω)dω

(B.7)

where gd(ω) = −φ′(ω) is the group delay. The duration descriptor DD makes use of the above

equation to define the duration of a spectral peak as shown in Table B.1.

Frequency Coherence

The frequency coherence descriptor FCD is derived from the frequency reassignment operators.

The reassignment can be interpreted as the estimation of the instantaneous frequency (frequency

reassignment) and the group delay (time reassignment) for each bin in the time-frequency plane.

The reassignment spectrogram incorporates phase information which is not included in the tra-

ditional spectrogram and indicates more precisely the center of gravity in the time-frequency
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plane.

An efficient computation of the reassignment operators has been proposed by Auger and

Flandrin (1995), which is based on the STFT. A later review points out the relationship be-

tween the phase-derived reassignment operators and the amplitude-derived reassignment opera-

tors (Hainsworth and Macleod, 2003). Consider a STFT X(ω, t) = A(ω, t)ejφ(ω,t), the reassign-

ment operators are related to the partial derivative of phase w.r.t. time (instantaneous frequency)

and frequency (negative group delay):

ω̂(ω, t) =
∂

∂t
φ(ω, t) = ω + ℑ

{Xd(ω, t)

X(ω, t)

}

= ω + ℑ
{Xd(ω, t)X∗(ω, t)

|X(ω, t)|2
}

(B.8)

t̂(ω, t) =
∂

∂ω
φ(ω, t) = t−ℜ

{Xt(ω, t)

X(ω, t)

}

= t−ℜ
{Xt(ω, t)X∗(ω, t)

|X(ω, t)|2
}

(B.9)

where Xd(ω, t) is the STFT using the derivative of the window and Xt(ω, t) is the STFT using

a time ramped version of the window. The frequency offset between a bin of DFT (Discrete

Fourier Transform) and its instantaneous frequency (reassigned frequency), i. e., ω̂ − ω, is used

to measure the frequency coherence of a spectral peak. Frequency coherence descriptor FCD is

defined as the minimal frequency offset among all bins within a spectral peak (see Table B.1).

By taking the derivative of amplitude w.r.t. time and frequency, the following equations can be

obtained.

∂

∂t
A(ω, t) = ℜ

{Xd(ω, t)

X(ω, t)

}

(B.10)

∂

∂ω
A(ω, t) = ℑ

{Xt(ω, t)

X(ω, t)

}

(B.11)

Notice that the duration descriptor involves the calculation of the derivative of amplitude A(ω, t)

w.r.t. frequency ω (see eq.(B.7)).
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C
Sinusoidal Parameter Estimation

The observed quasi-periodic signals, usually embedded in noise, can be modeled as a sum of sev-

eral sinusoids plus noise. Short-time sinusoidal models can be either stationary or non-stationary.

Sinusoidal parameter estimation can be achieved by either parametric methods or non-parametric

methods. The accuracy of estimators is usually evaluated by comparing the estimation error vari-

ance to Cramér-Rao Bounds (CRB). CRB is a theoretical lower bound on the variance of an

unbiased estimator. The closer the estimated error is to CRB, the more accurate the estimator

is. The estimator’s bias can be observed when the performance of the estimator is no longer

improved under sufficiently high SNR conditions.

C.1 Short-time stationary sinusoids

A short-time stationary sinusoid model assumes stationarity in a short-time analysis window

and thus parameterizes a sinusoid with constant amplitude, frequency and phase. The Maxi-

mum Likelihood Estimation (MLE) method assumes the noise to be independent additive white

Gaussian noise (AWGN). For a single sinusoid under high SNR condition, the MLE of the fre-

quency is found by choosing the frequency at which the spectral magnitude attains its maximum

(Rife and Borstyn, 1974), i. e., the maximal spectral peak. In the DFT domain, peak-picking

provides a good initial parameter estimation and the parameter refinement can be applied after-

wards, such as the quadratic interpolation (Serra, 1989).

When there are more than one sinusoid involved, the difficulty arises for the MLE method

due to the presence of cross-product terms between sinusoids. As long as the frequencies of
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neighboring sinusoids are sufficiently separate, the cross-product terms can be neglected, thereby

permitting an approximate MLE. In this way, the spectral peaks remain as good initial parameter

estimates (Rife and Borstyn, 1976). However, parameter estimation for closely spaced sinusoids

require more sophisticated analysis techniques, such as the High Resolution (HR) method

(Badeau, 2005).

C.2 Short-time non-stationary sinusoids

In general, a non-stationary sinusoid can be expressed as

s[n] = a[n]ejθ[n] for n = 0, . . . , L− 1 (C.1)

where the amplitude a[n] and the frequency θ′[n] vary in the short-time analysis frame of length

L.

Frequency modulated sinusoids

A sinusoid with constant amplitude, a[n] = A0, and linearly changing instantaneous frequency

is called chirp. Accordingly, the phase is quadratic θ[n] = β0n
2 + ω0n + φ0 where ω0 is the

mean frequency, 2β0 is the frequency slope and φ0 is the initial phase. The MLE methods for a

single chirp (Djuric and Kay, 1990) and multiple chirps (Saha and Kay., 2001) have been derived.

Non-parametric methods based on time-frequency analysis such as reassignment methods (Auger

and Flandrin, 1995) can also serve to estimate the frequency slope (Röbel, 2002). Master and

Liu (2003) proposed an analytic solution to chirp parameters based on DFT and Fresnel analysis,

but a correction model is required for small frequency slopes.

Amplitude and frequency modulated sinusoids

Two models of sinusoids have been applied to the HR methods: (1) sinusoids with exponentially

damped amplitudes (Kumaresan and Tufts, 1982) or (2) sinusoids with polynomial amplitudes

(Badeau, 2005). In both cases, the frequencies of sinusoids are assumed constant. However,

the problem becomes complicated when both amplitude modulation and frequency modulation

(AM/FM) are involved in the model. For a single AM chirp, explicit expressions of estimates

might differ due to different assumptions on the models (Friedlander and Francos, 1995; Zhou

et al., 1996; Ghogho et al., 1999; Besson et al., 1999). Compared to the parametric methods, the

recently developed non-parametric methods have shown accurate results with better computa-

tional efficiencies (Abe and Smith, 2005; Wells and Murphy, 2006).

C.3 Selected methods for noise level estimation

In the proposed noise level estimation algorithm (see Chapter 4), efficient subtraction of sinusoids

is important for a better noise level approximation, which requires a good sinusoidal parame-
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ter estimator. For music sound signals, AM (tremolo) and FM (vibrato) are often observed.

Therefore, a non-stationary model is more appropriate to generalize music signals. The method

proposed by Abe and Smith (2005) is selected because of its efficiency and flexibility. Considering

an exponential AM and a linear FM, the amplitude and the phase of a sinusoid are expressed as

am,h[n] = eλm,h+αm,hn (C.2)

θm,h[n] = βm,hn2 + ωm,hn + φm,h (C.3)

where eλm,h is the instantaneous amplitude at the reference time index (usually at the center

of the window), αm,h is the AM rate, βm,h is half the FM rate (frequency slope), ωm,h is the

instantaneous frequency at the reference time index and φm,h is the initial phase.

The method of Abe and Smith (2005) is based on the quadratically interpolated FFT

(QIFFT) estimator with bias correction. The QIFFT estimator models the logarithmic am-

plitude and the phase by means of parabolic functions. It is exact for the Gaussian window

(Peeters, 2001). Due to AM and FM, bias is introduced to the estimates of amplitude, frequency

and phase. Moreover, there exist biases to be compensated for other types of windows. Abe and

Smith (2005) proposed to first estimate the parameters based on Gaussian window, and then

adapt the estimates to different types of windows. The correction coefficients are numerically

determined by multiple regression analysis.

Consider a damped chirp process y[n] = Ae−αnej(βn2+ωn+φ) + w[n] where w[n] is white

Gaussian process with variance σ2
w, the CRBs are (Zhou et al., 1996)

CRB(Â) =
σ2

w

2

ǫ2

ǫ0ǫ2 − ǫ2
1

(C.4)

CRB(α̂) =
σ2

w

2A2

ǫ0

ǫ0ǫ2 − ǫ2
1

(C.5)

CRB(φ̂) =
σ2

w

2A2

ǫ2ǫ4 − ǫ2
3

D
(C.6)

CRB(ω̂) =
σ2

w

2A2

ǫ0ǫ4 − ǫ2
2

L2D
(C.7)

CRB(β̂) =
σ2

w

2A2

ǫ0ǫ2 − ǫ2
1

L4D
(C.8)

(C.9)

in which

ǫk =
L−1
∑

n=0

(
n

N
)ke−2αn/L (C.10)

D = ǫ0ǫ2ǫ4 − ǫ1ǫ
2
4 − ǫ0ǫ

2
3 + 2ǫ1ǫ2ǫ3 − ǫ3

2 (C.11)

The estimator of Abe and Smith (2005) is tested for exponentially damped chirps with

random parameters that are distributed uniformly in the ranges specified in Table C.1. Since the

amplitude modulation parameter α is a variable in CRBs, the influences of α on the estimator
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parameter A α φ ω/2π β/2π

range 0.5 (0 : 0.05 : 0.3)/L [−π π] [0.01 0.3] [−0.5/L2 0.5/L2]

Table C.1: Sinusoidal parameter distribution range. The parameter α is selected between 0 and
0.3/L, with an increment of 0.05/L. The parameters of φ, ω and β are uniformly distributed in
the indicated range.

performance is first tested. Seven values of α are chosen in this test. For each α, one thousand

AM/FM sinusoids are generated. The analysis window is Blackman. The results are shown

in Figure C.1. It is observed that the frequency, the frequency slope and the phase estimators

have consistent performance at different amplitude modulation rates. To compare the estimator

performance using different cosine windows, the amplitude modulation rate is fixed at 0.3. The

errors are plotted along with the CRBs in Figure C.2. In both tests, the residual energy compared

to the additive noise energy is demonstrated, too.

120



−20 0 20 40 60 80
0

10

20

30

40
 (a) frequency

SNR(dB)

er
ro

r/
C

R
B

 (
dB

)

 

 

−20 0 20 40 60 80
0

10

20

30

40

50
 (b) frequency slope

SNR(dB)

er
ro

r/
C

R
B

 (
dB

)

 

 

−20 0 20 40 60 80
0

10

20

30

40
 (c) phase

SNR(dB)

er
ro

r/
C

R
B

 (
dB

)

 

 

−20 0 20 40 60 80
0

10

20

30

40
 (d) amplitude rate

SNR(dB)

er
ro

r/
C

R
B

 (
dB

)
 

 

−20 0 20 40 60 80
0

10

20

30

40

50
 (e) amplitude

SNR(dB)

er
ro

r/
C

R
B

 (
dB

)

 

 

−20 0 20 40 60 80

30

40

50

60

70
 (f) residual energy

SNR(dB)

re
si

du
e/

no
is

e 
(d

B
)

 

 

0
0.05
0.1
0.15
0.2
0.25
0.3

0
0.05
0.1
0.15
0.2
0.25
0.3

0
0.05
0.1
0.15
0.2
0.25
0.3

0
0.05
0.1
0.15
0.2
0.25
0.3

0
0.05
0.1
0.15
0.2
0.25
0.3

0
0.05
0.1
0.15
0.2
0.25
0.3

Figure C.1: (a)-(e): Abe&Smith estimator errors w.r.t. CRBs; (f): residual energy w.r.t. additive
noise energy.
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Figure C.2: Abe&Smith estimator using different cosine windows. (a)-(e): estimator errors and
CRBs; (f): residual energy and additive noise energy.
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D
The Expected Amplitude of
Overlapping Partials

One of the major problems with multiple-F0 estimation is the handling of the overlapping par-

tials. To facilitate the study of this problem, it is often assumed that the partials are sinusoids

overlapping at the same frequency but of different phases. Considering K sinusoids overlap, the

resulting sinusoid can be written as (Smith, 2007)

A cos(ωt + φ) = A1 cos(ωt + φ1) + A2 cos(ωt + φ2) + · · ·+ AK cos(ωt + φK) (D.1)

where each sinusoid has amplitude Ak, phase φk and frequency ω. Expand the above equation

using trigonometric identity

[A cos(φ)] cos(ωt)− [A sin(φ)] sin(ωt) =
[

K
∑

k=1

Ak cos(φk)
]

cos(ωt)−
[

K
∑

k=1

Ak sin(φk)
]

sin(ωt)

from which

A =

√

√

√

√

[

K
∑

k=1

Ak cos(φk)
]2

+
[

K
∑

k=1

Ak sin(φk)
]2

(D.2)

Given the observed amplitude A, it is very difficult to infer the unknown parameters (Ak)
K
k=1

and (φk)
K
k=1. To study the estimation of A, it is assumed that the amplitudes of all sinusoids

are known (or can be represented by the partial amplitudes of source models). In the following,
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the expected amplitude of two overlapping sinusoids is derived. An overlapping model is then

suggested for more than two overlapping sinusoids.

Expected amplitude of two overlapping partials

Based on the assumption that the partials can be represented by sinusoids, the partial overlapping

is represented by summing two sinusoids of the same frequency but of different amplitudes and

phases:

s = s1 + s2 = A1 cos(ω1t + φ) + A2 cos(ω1t) (D.3)

The amplitude of s is

A =
√

A2
1 + A2

2 + 2A1A2 cos φ (D.4)

It is assumed that the phase difference φ is uniformly distributed between −π and π, i. e., its

probability density function is f(φ) = 1/2π. The expected value of A can thus be calculated

E(A) =
1

2π

∫ π

−π

√

A2
1 + A2

2 + 2A1A2 cos φdφ =
1

2π

∫ π

−π

√

A2
1 + A2

2 + 2A1A2(1− 2 sin2 φ

2
)dφ

=
A1 + A2

2π

∫ π

−π

√

1− 4A1A2

(A1 + A2)2
sin2 φ

2
dφ

=
A1 + A2

π

∫ π/2

−π/2

√

1− 4A1A2

(A1 + A2)2
sin2 θdθ

=
2(A1 + A2)

π

∫ π/2

0

√

1− 4A1A2

(A1 + A2)2
sin2 θdθ

=
2(A1 + A2)

π
Ep(

2
√

A1A2

A1 + A2
)

(D.5)

where

Ep(k) =

∫ π/2

0

√

1− k2sin2θdθ (D.6)

is the complete elliptic integral of the second kind.

The variance of A can then be obtained

var(A) =
1

2π

∫ π

−π
(
√

A2
1 + A2

2 + 2A1A2 cos φ−E(A))2dφ

=
1

2π

∫ π

−π
(A2

1 + A2
2 + 2A1A2 cos φ)dφ− 2E(A)

1

2π

∫ π

−π

√

A2
1 + A2

2 + 2A1A2 cos φdφ + E(A)2

= A2
1 + A2

2 − E(A)2

(D.7)
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Figure D.1: (a) The expected overlap amplitude as a function of the amplitude ratio between two
partials; (b) Comparison between the expected amplitudes and the other two overlap models.

Without loss of generality, substitute A2 = rA1 ≤ A1 (where 0 ≤ r ≤ 1) into eq.(D.5) to

have

E(A)

A1
=

2(1 + r)

π
Ep(

2
√

r

1 + r
) (D.8)

This equation shows that as long as the amplitude ratio between two sinusoids is known, the

increment of the overlapping amplitude relative to the stronger sinusoid can be deduced immedi-

ately (see Figure D.1 (a)). An overlap model for two overlapping partials, called the expected

overlap model, is thus defined. The standard deviation appears to be rather large (compare

the thick solid line and the thick dash line in Figure D.1 (b)), which implies the large uncertainty

in the estimation of the amplitude of overlapping partials. Two assumptions usually made for

overlapping partials are: the additivity of the linear spectrum (A1 +A2) and the additivity

of power spectrum (
√

A2
1 + A2

2). Both assumptions are in fact special cases of φ (see eq.(D.3)).

The additivity of linear spectrum implies the maximum of the overlapping amplitude occurring

when two sinusoids are in phase, that is , cos(φ) = 1. The additivity of power spectrum implies

the cases when cos(φ) = 0, which is found close to the expected amplitude E(A).

Expected amplitude of N overlapping partials

For the general case that N partials overlap, it is assumed that the expected amplitude can

be deduced pair by pair using the proposed model. Given the amplitudes of all partials that

overlap {A1, A2, · · · , AN}, the resulting amplitude of overlapping partials A′ can be derived by

the overlap chain rule:

Initialization of A′ ← A1

for k = 2 to N do

A′ ← A′
⊕

Ak /* apply the overlap model for two partials */

end

return A′
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Evaluation

In order to compare the three overlap models, a test is designed to evaluate their modeling

precision with the following algorithm:

Algorithm: Expected spectrum using overlap models
input : The observed signal of N mixing sources with fundamental frequencies

F01 < F02 < · · · < F0N and known source models as partial amplitude sequences
output: The scaling factors (ck)

N
k=1 for source models that minimize the modeling error

Initialization of c1 by matching non-overlapped partials
for k = 2 to N do

find non-overlapped partials: U
find partials overlapped with lower F0s but not higher F0s: V
do initialization of the expected amplitude of V ← apply overlap model
if exist U then

Initialization of ck using U with LSE
else

Initialization of ck using V with LSE
end
do optimize ck using gradient descend for U + V ← apply overlap model

end

The idea is to make use of the available source models such that their optimal scaling factors

(ck)Nk=1 can be derived. The overlap model providing a more accurate estimate of overlapping

amplitudes should give rise to a more accurate estimate of the scaling factors. As a consequence,

the modeling error will be smaller. A synthesized music database is used (see Section 7.2.3) such

that individual source signals are available, from which the true source models are extracted.

Moreover, the overlap positions can be precisely inferred, which facilitates the calculation based

on the overlap models. For each number of overlapping partials, the modeling error is normalized

by the sum of the partial amplitudes. The results are shown in Figure D.2 for different numbers of

overlapping partials. The modeling error for non-overlapped partials (the number of overlap = 1)

is about 2%, which demonstrates that the scaling factors are well estimated. Of the three models,

the proposed overlap model using the expected amplitude performs the best. The additivity of

linear spectrum model has rather high errors compared to the other two models. In general, the

additivity of power spectrum has similar performance to that of the expected overlap model.
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E
A New F0 Salience Function based on
Inter-Peak Beating

(Harris, 1963) suggested locating all groups of pitch harmonics by means of identifying equally-

spaced spectral peaks on which the salience of a group is built. The group with the most dominant

salience is selected to estimate the F0. This method belongs to the spectral interval type F0

estimators (Klapuri, 2004). For instance, it is easy to identify the existence of F0 around 1380Hz

in Figure E.1(a) because the successive peaks separated by this frequency difference are rather

distinct and dominant in energy.

For polyphonic signals, however, partials belonging to different sources may form a group of

harmonics which results in ghost F0s. For example, two strong partials at 250Hz and 360Hz

from two sources may cause their frequency difference at 110Hz to appear as a good candidate.

However, the partials are not situated within the tolerance intervals of the harmonic frequencies

at 220Hz, 330Hz, 440Hz, etc. One way to avoid ghost F0 candidates is to cast further constraints

on the spectral location of each partial. In the following, we propose a new salience function,

called inter-peak beating (IPB), which integrates the spectral interval information and the

spectral location information.

The spectral peaks can be classified as sinusoidal peaks or noise peaks by the adaptive noise

level estimation (see Chapter 4). The noise peaks that do not result in significant beatings can

be ignored during the grouping of equally-spaced spectral peaks. Given an F0 hypothesis, the

sinusoidal peaks of the frequency difference within 3% of the F0 can be grouped into consecutive
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partials. The partial beating vector is defined as

PBV(h) = min(a(h + 1), a(h)), for h = 1 · · ·Hb (E.1)

where the minimum between two consecutive partials is selected for each pair and Hb is limited

to 10. The beating vector is weighted by their frequency proximity

FP(h) =

{

1− fh−fh−1

αF0 if fh − fh−1 < αF0,

0 otherwise.
(E.2)

and then summed to obtain

IPB =

Hb
∑

h=1

PBV · FP (E.3)

for each F0 hypothesis. α defines the tolerance interval (see Section 5.1.1). In this way, IPB

integrates the two criteria: harmonicity and partial beating into one salience function (see Figure

E.1).
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Figure E.1: F0 salience function based on Inter-Peak Beating: (a) An observed spectrum with
the estimated noise level; (b) IPB. The circles indicate the correct F0s at around 208Hz, 494Hz
and 1382Hz.
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