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~ Abstract—This article presents a frame-based system for es- where n is the discrete time index) is the number of
timating multiple fundamental frequencies (FOs) of polyptonic  harmonic sources (the polyphony), [n] is the quasi-periodic
music signals based on the STFT (short-time Fourier transfon) part of themth source and[n] is the noise part. The main

representation. To estimate the number of sources along wit o .
their FOs, it is proposed to estimate the noise level beforeimd problem to deal with is the modeling of,.[n] and the

and then jointly evaluate all the possible combinations amog decomposition of the observed signal into an unknown number
pre-selected FO candidates. Given a set of FO hypothesesgith of model sources, which is actually a problem of pattern
hypothetical partial sequences are derived, taking into awount matching. Despite a variety of existing methods, they nyainl
where partial overlap may occur. A score function is used toalect follow three principles that are derived from the physical

the plausible sets of FO hypotheses. To infer the best comlaition, " f ical inst t ds: (1) h icit
hypothetical sources are progressively combined and itetavely properties of musical instrument sounds: (1) harmonicity,

verified. A hypothetical source is considered valid if it eiher (2) spectral smoothness [5], and (3) synchronous amplitude
explains more energy than the noise, or improves significahtthe evolution within a single source [6]. These physical prdigsr
envelope smoothness once the overlapping partials are trieal.  are closely related to certain perceptual mechanisms hieat t
The proposed system has been submitted to MIREX (Music ,man auditory system uses to segregate harmonicallgdelat

Information Retrieval Evaluation eXchange) 2007 and 2008 tral ts f . th | 7 232
contests where the accuracy has been evaluated with respectSPECtral components forming a smooth envelope ([7], p.232)

to the number of sources inferred and the precision of the FOs and having a similar temporal evolution ([7], p.575). Some
estimated. The encouraging results demonstrate its comgéve  approach this problem under a global mathematical (formu-

performance among the state-of-the-art methods. lation/optimization) scheme, such as statistical adaptabf
waveform models [8], [9], non-negative matrix factorizati
I. INTRODUCTION based methods [10], [11], [12], “specmurt” analysis [13],

. : harmonic temporal structured clustering (HTC) method [14]
FUN_DAMENTAL frequency, or FO, is an essential de'Ot ers deal with each sub-problem independently [5], [6],
scriptor of harmonic sound signals such as speech

; . o . , [16], [17] and a probabilistic framework like hidden
music. Single-FO estimation algorithms assume that tmrjl\%a]rk(gv I’il‘IOEZIe|]iS often upsed for tracking [18], [19], [20], [21

at most one harmonic source of which the FO is to be : : S
: L . Extensive study of the problem of multiple-FO estimation
extracted. Although single-FO estimation algorithms hiawen
leads us to conclude that there are three fundamental models

con5|derab_ly _developed, their apphcafuon_s to music ngaas involved. (1) Source model: The use of harmonic patterns to
somehow limited because most music signals contain several . . X

; X S match the observed signal is the common technique for most of
concurrent harmonic sourcesMultiple-FO estimation algo- - ) .
. . .2~ the existing methods. Owing to the complex nature of musical
rithms are thus required for the general case and the egtimat o .

; instrument sounds, it is necessary to adapt the harmonic pat

of the number of sources, callgublyphony inference, has to

be addressed. The problem of estimating the FOs of a monot s ofy, [n] 0 a_varlety Of_ tw_ne-varymg m;trument soun(_js.
. o : : S:Source interaction model: Since the partials of harmonic
instrument solo recording is already challenging. Music

: . . sources may overlap, it is important to handle this situmtio
instruments produce sounds with various spectral envelope L .
. . . . such that a combination of harmonic patterns can be more
inharmonic partials and spurious components [1], [2]. When

S . . feasonably matched to the observed signal. For simplicity,
reverberation is involved, it prolongs preceding soundhéeve C o o .
. . - ._many existing methods assume the additivity of linear/powe
such that they overlap with the following events, givingeris

The complexity causes the octave ambiguity as well as toer estimating the number of sourcas; whereas many of the
piexity o guity existing methods use heuristic thresholds related to theceo
source number ambiguity. : . ;
T - . energy or the residual energy. The major drawback is thaethe
In general, polyphonic signals consisting of multiple har; : . -
. thresholds are not adaptive for different conditions ohalg
monic sound sources can be expressed as . ; . i .
to-noise ratios. Others model the noise as white Gaussiap no
M [8], [9] which is not appropriate for the colored noise that i
yln] = Z Ym[n] + 2[n] (1) usually observed.
m=1 Following the physical/perceptual principles, we aim at
1A note played by a musical instrument is considered a hammseiind tregting these_ key prOblemS by proposing the algorithms f(?r
source. noise estimation, harmonic matching adapted for polyphoni
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Fig. 1: Overview of the proposed multiple-FO estimationtsys Noise level estimation serves to distinguish the siilissfrom the noise
in the observed spectrum given by the fast Fourier transf@RT) analysis. After selecting the FO candidates, thegsjide combinations
are jointly evaluated and the number of sources is estimayea polyphony inference algorithm.

music signals and overlapping partial treatment. Anothepbserved signal Ifepr_fe_sgnted as Su_fj?es_swe spectral peaks

. . . . classified as sinusola/noise
We"'known_ problem of FO .eSt'mat'on _'S t.he prevention of noise model frequency-dependent envelope of limited capst
subharmonic/super-harmonic errors which is very challeng order applied to white noise
while dealing with polyphonic signals. For example, commonSource model quasi-harmonic model with smooth spectratlepes
subharmonics having the support from the partials of Con|_nteract|0n model the amplitude of overlapping partialsed®ined by
current sources can compete with the correct FOs. Therefore _
complementary criteria are proposed to prevent theseserror TABLE I: Models and assumptions of the proposed method
Instead of using heuristic thresholds, we propose to refer t
monophonic musical instrument sounds for deriving cohteren
thresholds. [1l. ADAPTIVE NOISE LEVEL ESTIMATION

Th|§ paper is organized as.follows. Ir_' Septmn I, Th_e Contrary to most methods that do not explicitly model the
overview of the proposed multiple-FO estimation method

. Th the alaorith ) h t of th ; Roise part of the signal, a probabilistic description of tloése
given. Then, the algorithms In each part otine System gig,q| ;g proposed. If the noise part is not estimated befomeh
presented: noise level estimation (Section Ill), jointleation

> . } .the number of sources can be overestimated when unnecessar
of FO hypotheses (Section V), candidate selection (Secti y

. : . Qources simply explain the noise.
V) and polyphony inference (Section V1). In Section VII, the In a previous study the statistical properties of the deter-

:avfaluatlgn result; artla Ereslen:_ed, m)tzluhdmg theZOMC;SREXC?N;%S inistic signals embedded in white Gaussian noise have been
nformation Retrieval Evaluation eXchange) an erived and used to distinguish deterministic componeots f

:jt?ss;ljt;elgnally, conclusions are drawn and perspectives Aoise in the spectrogram [25]. It makes use of the chi-sglare
' distribution to model the energy spectrum of noisy signals.

To be able to estimate the time-varying colored noise, we
take a different approach which makes use of the Rayleigh
distribution to model the spectral magnitude distributioi

A frame-based multiple-FO estimation system for singlgroise [26]. The noise is understood as generated from white
channel polyphonic music signals is to be presented (seeise filtered by a frequency-dependent spectral envetbpe;
Fig.1). Such a system can later include temporal informatigmoise level is defined as the expected magnitude level oénois
by means of a tracking mechanism to build continuous F@aks. It is assumed that the noise level is slowly varying
trajectories, which can be used for automatic music tramscrwith frequency such that it can be modeled by means of
tion, source separation, etc. The algorithms developetién 2 Rayleigh distribution with frequency-dependent mode. A
system are based on the sinusoids plus noise signal modayleigh random variable X has probability density funetio
of which the components are derived from spectral peal&/]:
[23], [24]. Because the spectral peaks are representdtiheo
components generated from the harmonic sources, they give LT 220207
a direct access to analyze the underling sources. The system ple) = o2°

starts with adaptive noise level estimation which classifiee Consider the Rayleigh random variahlé as the observed
spectral peaks into sinusoids and noise. The sinusoid&spegagnitudes of noise peaks in a narrow band, therReyéeigh
are considered partials of harmonic sources that a conbimatyode » specifies the most frequently observed magnitudes of

of harmonic patterns related to FO hypotheses will matcheise peaks. The expected value of the noise spectrum is give
To jointly evaluate a combination of hypothetical sources,

their partials are estimated by harmonic matching and the E[X] = o\/7/2 (3)
overlapping partials are treated. Then, four criteria asedu

together to score the plausibility of a hypothetical conaliion.  Which is referred to asnfean) noise level. The pth percentile
The polyphony hypothesis is progressively increased ahd al
possible combinations are evaluated. A candidate sefectio
method is also proposed such that the number of combinatiamseferred to asoise envelope which provides a threshold that

to evaluate is reasonably reduced. Finally, the most ghéisican be used to classify the sinusoidal peaks in the spectrum,
combination is determined by a polyphony inference alggiven the Rayleigh mode and a user selected control param-
rithm. The model assumptions made are listed in Table I. eterp that determines the probability of misclassification.

the strongest source

Il. SYSTEM OVERVIEW

with0<z<o00,0>0 (2)

zp =0y —2log(l—p), 0<p<1 (4)



The main problem here is to establish an estimate o ;
the noise level given only the observed spectrum. Using I . SD;;;ZF;Z;E’
the spectral peak descriptors presented in [28], the sidsiso 201 O noise peak ||
obeying the allowed amplitude/frequency modulationrases . ¥ |\ f | x» | L, (mode)
be detected [29]. The sinusoids are then removed from th ’ \ ——L (mean)
spectrum. The residual spectrum is expected to contain tF 0 f |L mll - - =L, (envelope) |}
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noise as well as the sinusoids with larger modulation ratess _;qFs
For example, colliding sinusoids that represent the opeitey
partials of concurrent harmonic sources. These peaks c:¢
further be distinguished by means of the statistical priogeer -30F
of the Rayleigh distribution. To this end, an iterative apgir
mation process of the noise level is proposed. Accordinbeo t
relation between the Rayleigh mode and the expected value . 50|
the log-amplitude spectrum [30]: ~60

amp(dB)

1
—20f ||
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Ellog X] ~ log() + 0.058 (5) rea(ti)

the frequency-dependent expected amplitude of the rasidll, 2 C 800 N0 e I rechald which s user

spectrum Cf"‘” be derived using eq.(3). Noltlce. thalbg X djustable. For comparisons, the estimated Rayleigh mgodarid

can be (_asum_ated by means of C(_apstral liftering [31], [3Zfhe noise level I are also shown.

In each iteration the residual amplitudes of the spectruen ar

first normalized by the current estimate of the Rayleigh mode

and the spectrum is then tested against the hypotheSiStthaﬂairmonic sources, and noise. Accordingly, a set of hypiathlet

follows a Rayleigh distribution. To achieve an efficientttesSources shall match as many sinusoidal peaks as possible. It
that can easily be evaluated in the iterative proceduretette .

) "y is proposed to jointly evaluate the plausibility of a set & F
is based on statistical measures and makes use of the factﬁ otheses, following the three physical/perceptualqipies
mean and variance of the Rayleigh distribution are coupl t i '

_ _ ) his section, the description of the joint estimationcaithm
through the Rayleigh mode. A straightforward approach is

K K is of which the definition imolies b focused on the case in which the number of sources is
use skewness or kurtosis of which the definition implies boffy oy The polyphony inference algorithm will later makeus

mean and variancg.. Skewness, dgfined as the third mo e jointly evaluated FO hypotheses to estimate the numbe
about the mean divided by the third power of the standa{)q sources

deviation [33], is chosen. To increase the speed of thetitera
procedure the normalized spectrum is divided into subbangls Hynothetical Partial Sequences
of equal bandwidth and in each subband the skewness is .. .
Given a set of FO hypotheses, the frequencies and the

calculated and compared to the skewness of the Rayle%plitu des of theithypothetical partial sequences (HPS) are

distribution estimated by two processes: (1) partial selection and (2)
2(r — 3)/7 overlapping partial treatment. The partial selection téghe
Skwrayr = W = 0.6311 (6) is based on harmonic matching which is generally used for

single-FO estimation [34]. It makes use of a spectral comb
_lf f[he _Obs“f”{ed skeyvness falls_ betweand 5 ]_“wmyl' the ith a regular interval of FO to match the observed spectral
distribution fit is considered achieved. Otherwise, thg@dat 0,15 This technique is adopted here with several refinsmen
outlier in the related subband is re-classified as sinusodl &, ¢onstruct hypothetical sources, such as inharmonidapart
the noise level is updated accordingly. Since only a feyanation (see Appendix A). To remove the ambiguity in the
sinusoids are expected to remain in the residual specthey, toverlapping partials of HPS, it is proposed to re-estimfate,

initially give rise to a negative skewness. As the outliems ag, - hypothetical source that overlaps, the partial aodsit
iteratively re-classified, the skewness is expected t0e®EE 1 250 on the interpolation of non-overlapping partiale &g.
toward that of the Rayleigh distribution. When all the subti® 3 g Appendix B).

achieve the distribution fit, the noise level and the noise
envelope are obtained (see Fig. 2). The peaks above the n@ségre Function

envelope are classified as sinusoids and those below it A llowing the guiding principles, we concentrate on de-

classified as noise. Notice that if the underlying nmsellevgitgning four score criteria to evaluate the plausibility of

varies significantly within a sgbband, the procedure may nﬁypothetical sources: harmonicity (HAR), mean bandwidth
converge to a reasonable estimate.

(MBW), spectral centroid (SPC), and the standard deviaifon
IV. JOINT EVALUATION OF MULTIPLE FO HyPoTHEsEs ~ Mean time (SYNC). Conceptually, each criterion is designed
to disfavor the FO hypotheses that are either lower or higher
than the correct FO according to the respective principhe T
idea is to have them work in a complementary way such that
2For the analysis frequency up &Hz, 25 subbands are used empirically.the subharmonic/super-harmonic errors are prevented.

Noise level estimation provides a probabilistic classifaa
of the spectral peaks into sinusoids, considered the padfa
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Fig. 3: Hypothetical overlap treatment: (a) HPS constmitte partial -~ Fig. 4: Spectral smoothness comparison between the HPSeof th
s_,elect_lon; (b) HPS after the treatment of the overlappingigda. The correct FO and that of the subharmonic FO/2. The demondtrate
lines illustrate the envelopes of the HPS. sample is a clarinet sound playing the note Bb3.

1) Harmonicity: The score criterion HAR evaluates the harwhich indicates the degree of energy spread in the high fre-
monic matching between the combination of the hypothetiogliency. In this way, the envelope @f, with smaller variations
sources and the observed spectral peaks. To derive the hasults in a smaller MBW). The function of MBW is to
monic matching using/ hypothetical sources, their individualdiscriminate a correct FO from its subharmonics. To further
deviation vectorsd,, (i) (see eq.(14)) are first combined agllustrate the function of MBW, a clarinet sound signal isds
follows: to demonstrate the difference in the envelope smoothness fo

) . ) ) the HPS of FO and the HPS of F0/2 (see Fig. 4). The resonance
Dy (i) = min ({d (i)} o) , Vi€ ] () structure of the clarinet sound does not result in a smooth

where I is the number of the peaks. That is, each observegectral envelope. Nevertheless, the envelope of FO/2sss le

peak is matched with the closest partial among all HPS sugfooth than that of FO. Compared with the HPS of FO, the
that the resulting combination explains the observed spect HPS of a subharmonic like FO/2 has higher frequency energy.
with the lowest inharmonicity. HAR is then defined as thdhat is, the energy spreads more widely in frequency and

weighted sum ofD (i) for all peaks MBW is larger. o
, 3) Spectral centroid: For harmonic instrument sounds, the
i1 Spec(i) - D (1)

spectral centroid tends to lie around the lower partialabse
211 Spec(i) the higher partials often decay gradually. According tcs thi

) Z__ ) general property related to the spectral smoothness phinci
where thepeak salience, Spec(i), is the square-root of the sumihe centroid can evaluate the energy spread of a HPS:
of linear amplitudes for all the bins within thah spectral
peak. The reason of n_ot using the pegk energy (the_ sum B ij;”ln[HPSn(n)]Q
of squared amplitudes) is to not emphasize the dynamics of SPG,, = ~

B/2 > Z1[HPS,(n)]?

partial amplitudes. It is well known that harmonic matching
alone is not adequate for determining the best FOs becaesefiare N is the length of HPS. B is a normalization
m .

subharmonics will have competitive matching score. Therf'aictor determined by Fyo/F O, |. The spectral roll-off Fyg
fore, the following three criteria are designed to compensa;ands for the frequency limit containirg)% of spectral
HAR. ) energy in the analysis frequency range [35l0min iS the
2) Mean bandwidth: To score the spectral smoothness of ginimal FO hypothesis in search. Spectral centroid is desig
hypothetical source, the frequency content of the envetdpe, nrevent especially common subharmonic errors. A common
a HPS is evaluated by means of its bandwidth. By assembligghnarmonic may relate the partials of several sourcesto fo
the HPS with its mirrored sequence, a symmetrical sequencemqgoth envelope, which is favored by MBW. However, SPC
gm With smooth transition in the middle is obtained (see Figengs to disfavor it because the related partials oftenaspre
4(a)). ApplyingK -point® FFT tog,,, the related spectruf,, rather widely in frequency.
is acquired (see Fig. 4(b)). Mean bandwidth is then defined %)) gynchronicity: To evaluate the synchronicity of the tem-
follows poral evolution of the partials in a HPBgan time is estimated
1 K)2 kG () 2 for individual spect_ral peaks. Mean time is an indication of
9. k=1 m (9) the center of gravity of the signal energy [36]. It can be
K/2 ZkK:/f |G ()| defined in the frequency domain as the weighted sum of group
delays. The mean time of a spectral peak can be estimated by
3Two times the next power of 2 of the length gf,. considering only the frequency bins within a spectral peak,

HAR = 2

(8)

(10)

MBW,,, =




which can characterize the amplitude evolution of the eelat

source [37]. For a coherent HPS, the synchronous evolufion ¢ 201 =ﬂ§ ZEZV
partials is expected, which results in a small variance ciime 180 %;‘ELSYNC
time w.r.t. the matched peaks. Thean time of a hypothetical .F

source, denoted byT,,, is calculated as the power spectrum 1l |
weighted sum of the mean time of the hypothetical partials. | M |

The standard deviation of the mean time of the partials is the §
formulated as & 107
ol
SYNG, = = [ S {(fi -T2 wali)} (1) o

L2

ieHPS,, 4r
whereL is the window sizet; denotes the mean time of the Zj.ﬂﬁ Nl HH |
2

0

ith observed peak. The weighting vectoy, is constructed 1 2 4 5
polyphony

from the amplitudes of the HPS. The weight of overllapp|n|gig. 5. Evaluation of the score function for the case when the
partials are set to zero because the spectral phases ailelp0Sg,yphony is given. The functioning of the score criteri@ aom-
disturbed. Since this criterion in some way makes use géred: deactivation of MBW (no MBW), deactivation of SPC (no
the randomness of noise to disfavor an incoherent HPS, SIAC), deactivation of SYNC (no SYNC) and activation of ak th
exponential compression factor 623 is applied tow,, in ~ cfiteria (ALL).

order to raise the significance of the noise components ligee t

specific loudness descriptor in [35]). In this way,, avoids

the use of the disturbed phases of overlapping partials, afd gyaluation for the case when the polyphony is given

makes use of the spurious peaks to penalize a HPS matching llowing th luati h £15 ical inst ¢
more noise peaksu,, is then normalized such that its sum is ollowing the evaluation scheme of [5], musical instrumen

sound samples are semi-randomly mixed with equal energy to
one. create the evaluation database for the case when the paolypho
Notice that the three criteria presented so far are cakedlat poyp

. ; o 14
individually for each hypothetical source. To combine the 9Ven [6]. To rain the weighting parametefs, };_,, 100

individual criteria into combinatorial ones (MBW, SPC an(EC) :);ﬁ:;gg tshaémt?:izsir:or dﬁ;gazzly_?_ggnx;m&noneat;)az]\./:tearrse
SYNC), they are weighted by theffective salience of the g X ghting p

respective hypothetical sources. The effective salienctié the score function are trained by the evolutionary algarith

sum of the peak salience of the related partials. The tel[%sl and the parameter set resulting in the best performénce

. s . . IS ‘selected for the evaluation. The joint estimation alkiponi
effective” is used because the ambiguous partials have bee . )
. iS tested for the polyphony from one to five (see Fig. 5). The

treated such that the impact of the other sound sources on = =~ ° o X
. . analysis window size i93ms and a correct estimate shall not
the related partials are at least partially removed. Theesca

function is then formulated as a linear combination of thar fo deviate from the_groupd truth by morg thafi (a quarter-
criteria: tone range). To investigate how effectively MBW, SPC and

SYNC compensate HAR, a further test is carried out in which
one of the three criteria is deactivated. It is observed tiat
S =p; -HAR - MBW -SPC -SYNC (12 - o
b1 tp2 tps t P (12) deactivation of any of the three criteria degrades the divera

where {p;}%_, are the weighting parameters. Note that theerformance. The result also demonstrates the competitive
J= ’ i
individual score criteria are nonlinear functions of thesetved performance of the proposed algorithm compared to several

spectra that have been carefully designed to achieve optiftig0rithms mentioned in [39] that are evaluated under alafmi

performance (spectral compression, overlap treatmeat). etS¢N€Me:
Various implementations of the different criteria have bee
tested and only the best set of criteria is presented here. V. CANDIDATE SELECTION

While a nonlinear combination of the criteria would certgin - e joint estimation algorithm has a computational concern
improve the final r_esult it would complicate the understagdi {5t the number of combinations grows exponentially with
of the score function. the number of FO candidates as well as the polyphony. If
The four criteria are designed in a way that a smallghe FQ candidates are, for instance, sampled drHa grid
weighted sum stands for a better score. HAR will slightlyoiav petweer50Hz and2000Hz, there will be more than one billion
subharmonic FOs but strongly disfavor super-harmonic FQgmpinations to evaluate for a polyphony of three. A proper
whereas MBW, SPC and SYNC strongly disfavor subharmonigndidate selection helps to reduce unnecessary catmgati
FOs and slightly favor super-harmonic FOs, making use of tghijle keeping the robustness of an FO estimation algorithm.
respective features of the signal. The weighting pararsetr | thjs section, a candidate selection method is presefites.
trained to balance the relative support of each criteriarhsuunde”ying FOs are seen as two groups. For the FOs that are

that the score function generally ranks the correct contioina myitiples of another FO, they are harmonically related FOs
on top. The overall scoring mechanism thus remains easy to

comprehend. p;j}i_, = {0.3774,0.2075,0.2075,0.2075}




(HRFOs). Otherwise, they are non-harmonically related F@sne models are trained over all instruments for musicasiot
(NHRFOs). The partials related to a HRFO are very likely ttanging from Ab1l to B6.
be completely overlapped with other sources (e.g. the FO ofGiven the HPS of a NHRFO, the matched tone model is
1051Hz in Fig. 3); whereas those related to a NHRFO arselected according to the least squared error. The paetals
only partly overlapped (e.g. the FO @#0Hz and264Hz in  ceeding the envelope of the tone model are possibly gemkerate
Fig. 3). Following this concept, the candidate selectiothmé from one or more HRFO sources within the NHRFO source.
first extracts the set of NHRFO sources that match most Bhch partial position of the NHRFO source is considered a
the sinusoidal peaks, followed by detecting probable HRFRFO hypothesis and if it relates to a significant amount ef th
sources within the NHRFO sources. exceeding partials, it is extracted as a HRFO candidatealio t
the threshold for the exceeding partials, we refer agaiméo t
A. Extraction of Non-Harmonically Related FO Candidates musical instrument sound samples and derive the apprepriat
(NHRFOs) threshold. The threshold has been derived for each note and

The extraction of NHREOs involves three parts.or each partial position, averaging over all the instrutaen

predominant-FO estimation, the verification of an extrdcté‘lo]'
FO candidate and a criterion to stop the iteration. For

predominant-FO estimation, the score function is used as ¢

a single-FO estimator to extract the most probable FO. To 3k , 1
suppress an extracted source, the peak salience relate (@, |
to its partials are set to zero. To avoid the extraction of

spurious candidates, thermonic-to-noise ratio [32] related 1ir i
to the predominant FO is evaluated. The overlapping partial 0 ‘ ‘ ‘

are treated beforehand for a less ambiguous evaluation 19 & 10 15 20 25
Similarly, the residual-to-noise ratio is calculated for all 0.8k i
the peaks that are not yet explained by the FO candidates o) 0.6 ]
It is meant to indicate if any NHRFO sources may remain. "~ | |
Accordingly, the extraction process can be terminated when 02l |
the residual-to-noise ratio falls below a pre-defined thoés '

The FO-dependant thresholds for both ratios are trained or % 5 10 15 20 25
the periodic parts and the noise parts of musical instrument partial index

sound samples [40], respectively. Fig. 6: Two types of tone models for the note E3: (a) weak-

fundamental model; and (b) strong-fundamental model. Taeix
B. Detection of Harmonically Related FO Candidates (HRFOs) ~ represents the partial index; the y-axis represents tlagivelampli-

Each NHRFO represents a harmonic group within whictHde'
HRFOs are to be extracted. It is assumed that as long
as a HRFO source is dominant and disturbs the envelope
smoothness of the related NHRFO source, it is reasonable to
consider the HRFO to be an FO candidate. The same concept VI. POLYPHONY INFERENCE
is proposed in [15] and the interpolated amplitudes are ased
the reference envelope to measure how much the smoothnesghe estimation of the number of sources is a critical problem
is disturbed. The issue of this method is that the overlappiaf multiple-FO estimation. Our strategy is to progressivel
partials may be used for interpolation. Since there are #crease the polyphony hypothesié and calculate the score
means to locate the overlapping partials in this stage, wéall possible combinations of FO candidates. The scoring o
propose to refer to the tone models of musical instrumehypothetical combinations is used to select the most dteusi
sounds. ones, among which the best combination is determined by

Using a collection of samples from McGill Universityiteratively verifying the related FO hypotheses to cordaite
Master Samples, lowa University Musical Instrument Sasiplghe estimates. The estimation of the largest polyphonyipless
IRCAM Studio On Line and RWC Musical Instrument SoundVinq. relies on thescore improvement [4]. All the top-
Database [41], we group the observed signals accordingato tiive combinations (ranked by the score function), denoted by
types of tone modelsstrong-fundamental model and weak- {C}Nmer  are retained for the consolidation of the final FO
fundamental model. The strong-fundamental model is of aestimates, denoted hy.
strong fundamental, which represents a spectral envelithe w The inference algorithm begins with ranking the individual
a fast decay for higher partials (see Fig. 6(b)). This corr&0 hypotheses found ifly,, ., denoted byi, in order of their
sponds to the general pattern that is used in several axistgalience which is derived from the individual score weighte
methods [14], [13], [17]. The weak-fundamental model is dfy the appearing “frequency” iGy,, .. Beginning with the
a weak fundamental, which represents a spectral envelopest salient FO hypothesis, each hypothesis is consebutive
with boosted partials at resonance frequencies higherttren combined with the current estima#® and verified according
first partial (see Fig. 6(a)). In each group, the FO-dependea the following criteria.



1) An additional NHRFO source shall explain more than ‘ ‘ ‘ ‘ ‘ ‘
noise. An added NHRFO source is considered valid if the I MIREX 07

o
©

reduction of theesidual salience AEr, is larger than theoise 0.7} S [__IMIREX 08},
salience E,,,;sc. Both salience is calculated by summing the 06k ] M »
peak salience of the respective residual or noise peaks. Th »

0.5

is, adding a NHRFO source is reasonable as long as the noi
overlapping partials explain a significant amount of sadlien
peaks.

accuracy
o
~

However, adding a source of HRFO may not reflect a 0.3
significant AEr if most of the partials are overlapped with 02
other sources. The second criterion is therefore propased t '
further validate the HRFOs. 0.1

2) An additional HRFO source shall improve the spectral | | ‘ ‘ ‘ ‘
smoothness: Adding a HRFO source usually improves the 1 2 3I o 5 6
smoothness of the spectral envelopes of the previouslgtsele polyphony

sources. However, a constraint is necessary to prev(':'rmgldqfig. 8: Comparison of the accuracy rates between the MIREX'0

spurious HRFOs. To achieve this goal, it is proposed to @efiyersion and the presented version (MIREX'08). Both are waiald
the constraint from the score criterion MBW of musicalising 26 pieces of synthesized polyphonic music.

instrument sounds. Given a harmonic sound, each partial
frequency is considered a HRFO hypothesis. For each HRFO
hypothesis, the decrease of MBWANBW) is calculated,
which is the difference of MBW before, denoted bybw,,

crease of the polyphony hypothesis the algorithm searches
1 1 F Nmax
and after, denoted bynbw,, smoothing out® the related for th? mgtchgd combinations o, 4 .Whgn a.matched
combination is no longer found, the consolidation process

partials. For each analysis instancepw, of the correct . : : .
FO and mbws of the HRFO hypothesis that results in th(?S:E’SSAIh;g%‘?:%’ﬁgofrllgv&sgg:Sbgliiﬁﬁg ?rllo[r;f%]w ith the estimat

maximal AMBW are retained. For each musical note, the
calculatedmbw, and mbw, are averaged for all the analysis
instances of all the instruments (see Fig. 7). The threshold VII. EVALUATION
of the improvement of spectral smoothness is then definad Private Evaluation

as Ambw = (mbw, — mbw,)/mbw,. Accordingly, an added

; k X A systematic method has been proposed to create a poly-
HRFO source is considered valid XMBW > Ambuw.

phonic music database to evaluate the proposed system [42].
In total, 26 pieces have been prepared for the evaluation.

022 m‘bw0 The evaluation metrics take into account the estimatiomef t
number of sources [43] and tluwerall accuracy rate is used
0.2] as the main criterion:
NCOT‘T
48 ACC Ncor'r + Nmiss + Nsubs + Ninst (13)
016t where N, denotes the number of correctly estimated notes,
N,.iss denotes the number of missing not8s,,;,; denotes the
014l number of substitution notes, amd;,,,; denotes the number
of insertion notes. Concurrent sources with their FOs edl&b
012k the same note are regarded as one single source. The system
is evaluated on a frame-by-frame basis, and a correct @stima
sl ‘ ‘ ‘ should not deviate from the ground truth by more ti3&t

30 40 50 60 70 80 90 100 Tested on the synthesized polyphonic database, the prdpose
MID! note number system, which has been submitted for MIREX (Music Infor-
Fig. 7: Comparison of MBW calculated from musical instrumeriation Retrieval Evaluation eXchange) 2008 [44], is coreplar

sounds: MBW of the original spectral envelopesw, and MBW to the version submitted for MIREX 2007 [45] (see Fig.
of the smoothed spectral envelopedw,. The two thin curves are 8). The MIREX'07 version is an earlier implementation of

second-order polynomial functions fitting the trained MB\atal the proposed System_ It has a S||ght|y different po'yphony
inference algorithm and it appears to bias low polyphony.[46
mat is, it tends to use fewer sources to explain the observed
ali : e .

signal and the accuracy in the estimation of high polyphony
is not satisfactory. The proposed system uses the presented
polyphony inference algorithm, which improves signifidgnt

5A smoothed out partial is replaced by the amplitude intextomh of its the accuracy for the polyphony highe.r than 3. The average
adjacent partials. accuracy rates of the MIREX'07 version and the presented

When an FO hypothesis meets the requirements for a v
estimate, it is removed from the hypothesis ltistand added
into the set of the FO estimaté’S. During the progressive in-



ID RK CYx ZR PI1 EV2 | CClx SR EV1l | PEl PLx CC2« KE2 KE1 | AC2« | AC1lx | VEx
Acc | 0.605| 0589 | 0.582 | 0.580 | 0.543 | 0.510 | 0.484 | 0.466 | 0.444 | 0.394 | 0.359 | 0.336 | 0.327 | 0.311 | 0.277 | 0.145

TABLE II: The results of MIREX 2007: Multiple Fundamental équency Estimation & Tracking (frame-by-frame evaluation

ID YRC2 | YRC1x PI2 RK PI1 VBB | DRD | CL2« | EOS | EBD2 | EBD1 | MG CL1+ | RFF1 | RFF2
Acc | 0.665 0.619 | 0.618 | 0.613 | 0.596 | 0.540 | 0.495 | 0.487 | 0.467 | 0.452 | 0.447 | 0.427 | 0.358 | 0.211 | 0.183

TABLE llI: The results of MIREX 2008: Multiple Fundamentakéguency Estimation & Tracking (frame-by-frame evalualio

ID | YRC2 RK PI2 PI1 VBB ZR1 ZR2 ZR3 EOS | EBD2 | EBD1 | RFF1 | RFF2
F-measure (Onset-Offset) 0.355 | 0.337 | 0.192 | 0.247 | 0.197 | 0.261 | 0.263 | 0.278 | 0.236 | 0.158 | 0.176 | 0.028 | 0.032
F-measure (Onset Only) 0.552 | 0.614 | 0.396 | 0.470 | 0.521 ] 0.518 | 0.520 | 0.530 | 0.503 | 0.384 | 0.417 | 0.14 | 0.132

TABLE IV: The results of MIREX 2008: Multiple Fundamental éguency Estimation & Tracking (note transcription)

system areb6.56%, and 64.75%, respectively. The presented

system has achieved an improvement 8% in accuracy. 1 onE 1 ™o
However, the estimation for the polyphony higher than fiv 08 08
is still to be improved (see Fig. 9). 0.6 06
0.4 0.4

B. Public Evaluation > 2 .II

The public evaluation results of MIREX 2007 and 2008 fo t2sasers 123450678
the subtask “frame-by-frame evaluation” are listed in &b y THREE ) FOUR
Il and lll, respectively. The participants are denoted bg tF 08 08
team IDs with numeric labels denoting different versions ¢ 0.6 0.6
the submitted systems. Themark indicates that no temporal 0.4 0.4
continuity is used in the process. The evaluation databmse 0.2 lII 02 .ll.
MIREX 2007 is composed of 20 pieces of real recording 123450678 T 2345678
and 8 pieces of synthesized music; the database for MIRE FIVE SIX
2008 is composed of 28 pieces of real recordings and 8 pie: 0; 0;
of synthesized music. In order to compare the results, it 06 06
suggested to use RK as the baseline method because the ¢ 04 oal ;
version has been submitted for both years [47]. The autho 02 .II 0.2 II.
team ID is CY in 2007 and YRC in 2008. CY and YRC1 refe 0

. N ) 123 456 7 8 O12345678
to the frame-based multiple-FO estimation system predent

whereas YRC2 further includes a tracking algorithm [21]. IFig. 9: The distribution of the estimated polyphony for ttudyphony

both evaluations, the proposed system CY/YRC and the otﬁ'ign;‘nphlonto ?HeThZ Tg"iegIeseslﬁg fﬁé’ffﬁtrﬁ;{gﬂcgf.spﬁ%°°”e°t
o . y Vi X-axi I Yy Y-

tv_vo,_ .RK and Pl [17], are ranked at top pOSItlonS’_Wlth is represents the percentage of the estimated polyphomng

significant accuracy gagh{ and above) compared with they| instances. The peaking at the correct polyphony is oksefor

rest of the systems. Notice that Pl follows the similar scéenthe polyphony below five.

as our joint estimation approach, whereas RK is based on

an iterative estimation approach [19]. The gain in accuracy

appears more significant in the result of the second subtask:

note transcription (see Table 1V). In this evaluation, ateys ~ The MIREX results contain measured runtime for all algo-
shall report the onset time, offset time and the average Fthms. When comparing runtime of the algorithms, however,
of each note. A total of 30 files were used in this task: 2@ne has to take into account that the software means that are
real recordings (including 6 piano solos) and 8 pieces afed to implement the different algorithms have a significan
synthesized music. The evaluation criterion is the F-measumpact on the runtime. Therefore, the MIREX runtime results
[20]. A note is correctly estimated if its FO does not deviateave to be treated very cautiously. It is clear, however tha
from the ground truth by more thadfs and the onset/offset the algorithm presented here will always be relatively lgost
time is within £50ms range of the ground truth. It is foundbecause for a target polyphony and N FO candidates it
that the proposed system has a rather precise estimatitwe ofias to evaluate in the order QI;V[) possibilities, while the
offsets. This result strongly demonstrates the advantaffeeo iterative algorithms like RK will test only in the order &f M/
adaptive noise estimation and the coherent thresholdgedkripossibilities. For the detailed list of the participantdahe
from musical instrument sounds that allow to detect harmordescription of their methods, readers are invited to cdrikal
sources of relatively weak energy. However, our trackinglREX webpage and the related articles (AC in [10], EV and
algorithm does not yet include a probabilistic descriptadn VBB in [12], KE and EOS in [14], PE in [43], PL in [48],
the onsets and is expected to be improved. SR in [11], VE and EBB [20], ZR in [15], etc.).



VIIl. CONCLUSIONS ANDPERSPECTIVES Aoz

We have presented a frame-based multiple-FO estimation . :
system which analyzes polyphonic music sound signals. The i Amin
development of the algorithms follows three guiding pries 1 3 ‘ L
related to the physical properties of harmonic instrument (1—a)f, fn Q4+ a&)fn 1—a)far1  far1 QA+ &) frsr
sounds: harmonicity, spectral smoothness and synchtgnici

. : : :Fig. 10: The allowed frequency differences of two adjaceattials
Several key problems have been treated: noise estimati @‘t match to the model harmonics (the two thick verticagsin The

harmonic matching adaptive to inharmonic partials, ovekyowed maximum ish,,.., whereas the allowed minimum is,,,.

lapping partial treatment, prevention of subharmonio#sup The tolerance interval is defined between the dash linesnérau
harmonic errors, the estimation of the number of sourcespdel harmonic.

etc. We have also suggested the derivation of thresholds fro

musical instrument sound samples, which is coherent for the

analysis of polyphonic music signals. The evaluation ltesukhe degree of deviation of the ith observed peak from thieth

demonstrate the competitive performance among the State-r?armonic is expressed as
the-art methods. P

The proposed FO estimation system can be improved in

two aspects. The joint evaluation part and the polyphony [fimfmnl

. . A - . . i — Jm,h| < QhJm,h,
inference part could be combined in #erative combina- dm (i) = q  onfmn % Jm, | fn. (14)
. o . . . 1 otherwise.

tion/consolidation manner. Given a list of FO candidates, one

may iteratively evaluate the validity of an added FO hypsiie \yhere f; is the frequency of theith observed peak and
in a hypothetical combination. To develop an efficient aanmh is the frequency of theith harmonic of the model,
r_obust algorithm, a strat_egy to, for each iteration,_ repless ana ap determines the tolerance inten@s, £, . When an
likely FO hypotheses with more probable ones is necessagiserved peak situates outside the related toleranceahtér
The other possibility is to enhance the tracking mechanismg regarded as unmatched arg (i) is set to 1. Therefore,

Most of the research on multiple-FO estimation aims gt < dm(i) < 1. Since the partials may deviate from the
using it as the core component within an automatic musigeal model harmonics (multiples of FO) due to inharmopicit
transcription system which integrates low-level analyisés or frequency modulation, it is necessary to adapt the model
a high-level representation as a musical score. The devel@grmonics. If thehth harmonic matches théh peak, the
ment of an automatic music transcription system requires tt’yH_ 1)th harmonic frequency is updated By, 11 = fi+ fm
integration of the existing MIR (Music Information Retr&y \vhere f,, denotes the FO value. If theth harmonic does not
algorithms such as key estimation, tempo/meter estimatiqAatch any observed peaks, tfiet1)th harmonic frequency is
instrument recognition, etc. In fact, these algorithms it updated byf,, 411 = fim.n + fm- Moreover, since the partials
from each other to optimize the estimates. For example, gfdifferent sources may fall into one tolerance intervalsi
initial guess of the musical instruments can help to extragbcessary to select the best one for a given FO hypothess. Th
the Underlying FOs. The extracted FOs and the related ﬂbecﬁroposed partia' selection technique begins with ass@mB
envelopes can then be used to refine the initial guess of 8t partial to the nearest peak. For the consecutive partia
instruments, which will again help to refine the FOs. MUE}pl two peak candidates are considered: the nearest one, and
FO estimation is eSpeCia”y associated with the fO”OWlan the one of which the mainlobe covers the related model
tasks: instrument recognition, melody extraction, keynést harmonic. By means of comparing the average amplitude of
tion and chord estimation. Other potential applicatiortdtide  the previously selected three partials with the amplitudfeie
the separation/transformation of individual sound sosiioea o peak candidates, the peak candidate of a closer amglitud
recording, the automatic alignment of a polyphonic reawydi valye is selected because it is considered to form a smoother
with a given musical score, etc. envelope. When no matched peaks are found for a partial, its
amplitude is estimated by the interpolation of the neiglrigpr
frequency bins around the harmonic frequency.

In the case of monophonic signats, can be set in a way
that the tolerance interval equals the FO to allow inharmoni

The source model related to an FO hypothesis is a setpa#rtials, while prohibiting the overlaps of the tolerannter-
harmonic grids without specific amplitudes. Given a set ofls of adjacent harmonics. In the case of polyphonic sgjnal
FO hypotheses, the frequencies and the amplitudes of theiwever,«;, shall be determined in a more precise way to
partials are to be estimated. The degree of harmonic mafchprevent excessive partials of concurrent sources to fadl in
in frequency is evaluated between the model harmonics ah& same tolerance interval. For a convenient expresdien, t
the observed peaks. A tolerance interval [49] is designatedurce indexm for the related harmonics is ignored here.
in the neighborhood of each model harmonic, which allowAssuming that the values;, are similar for adjacent partials,
the inharmonic partials. The spectral peaks situated in the. a;, = «, it is proposed to pose a constraint on the
tolerance interval are considered thatched peaks, otherwise frequency difference of two adjacent partials (see Fig.. 10)
the unmatched ones. For a hypothetical source indexedrby With the allowed tolerance intervals, the maximum and the

APPENDIXA
HARMONIC MATCHING FOR PARTIAL SELECTION
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minimum of the frequency difference between two adjacent by the interpolated amplitude if the overlapping partial
partials are amplitude is larger than the interpolation.
— When the amplitude of the overlapping partial is smaller
than all the interpolated amplitudes of the colliding
Amaz = (L+ ) far1 — (1 =) fn & fm + (20 + Dorfim sources, it is difficult to infer which hypothetical source
Amin = (1 = a)fp41 = (L+a)fo = fm — (2R + D)afm contributes the most. In this case, the colliding sources
share the overlapping partial. The overlapping partial
in all HPS is labeled as credible for the consecutive
interpolation.

in which the approximationg;, 1 — fr =~ f, and fr11 +
fn = (2h +1)f,, are used. The allowed frequency difference
(half of the tolerance interval) for a peak to match a harrooni
is thus(2h + 1)ay, frn. Then,ay, can be selected according to
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