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Multiple Fundamental Frequency Estimation and
Polyphony Inference of Polyphonic Music Signals
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Abstract—This article presents a frame-based system for es-
timating multiple fundamental frequencies (F0s) of polyphonic
music signals based on the STFT (short-time Fourier transform)
representation. To estimate the number of sources along with
their F0s, it is proposed to estimate the noise level beforehand
and then jointly evaluate all the possible combinations among
pre-selected F0 candidates. Given a set of F0 hypotheses, their
hypothetical partial sequences are derived, taking into account
where partial overlap may occur. A score function is used to select
the plausible sets of F0 hypotheses. To infer the best combination,
hypothetical sources are progressively combined and iteratively
verified. A hypothetical source is considered valid if it either
explains more energy than the noise, or improves significantly the
envelope smoothness once the overlapping partials are treated.
The proposed system has been submitted to MIREX (Music
Information Retrieval Evaluation eXchange) 2007 and 2008
contests where the accuracy has been evaluated with respect
to the number of sources inferred and the precision of the F0s
estimated. The encouraging results demonstrate its competitive
performance among the state-of-the-art methods.

I. I NTRODUCTION

FUNDAMENTAL frequency, or F0, is an essential de-
scriptor of harmonic sound signals such as speech and

music. Single-F0 estimation algorithms assume that there is
at most one harmonic source of which the F0 is to be
extracted. Although single-F0 estimation algorithms havebeen
considerably developed, their applications to music signals are
somehow limited because most music signals contain several
concurrent harmonic sources1. Multiple-F0 estimation algo-
rithms are thus required for the general case and the estimation
of the number of sources, calledpolyphony inference, has to
be addressed. The problem of estimating the F0s of a monodic
instrument solo recording is already challenging. Musical
instruments produce sounds with various spectral envelopes,
inharmonic partials and spurious components [1], [2]. When
reverberation is involved, it prolongs preceding sound events
such that they overlap with the following events, giving rise
to polyphonic signals [3], [4]. When there are several musical
instruments playing, sound source components may overlap in
time and frequency, resulting in more complex sound mixtures.
The complexity causes the octave ambiguity as well as the
source number ambiguity.

In general, polyphonic signals consisting of multiple har-
monic sound sources can be expressed as

y[n] =

M
∑

m=1

ym[n] + z[n] (1)

1A note played by a musical instrument is considered a harmonic sound
source.

where n is the discrete time index,M is the number of
harmonic sources (the polyphony),ym[n] is the quasi-periodic
part of themth source andz[n] is the noise part. The main
problem to deal with is the modeling ofym[n] and the
decomposition of the observed signal into an unknown number
of model sources, which is actually a problem of pattern
matching. Despite a variety of existing methods, they mainly
follow three principles that are derived from the physical
properties of musical instrument sounds: (1) harmonicity,
(2) spectral smoothness [5], and (3) synchronous amplitude
evolution within a single source [6]. These physical properties
are closely related to certain perceptual mechanisms that the
human auditory system uses to segregate harmonically related
spectral components forming a smooth envelope ([7], p.232)
and having a similar temporal evolution ([7], p.575). Some
approach this problem under a global mathematical (formu-
lation/optimization) scheme, such as statistical adaptation of
waveform models [8], [9], non-negative matrix factorization
based methods [10], [11], [12], “specmurt” analysis [13],
harmonic temporal structured clustering (HTC) method [14].
Others deal with each sub-problem independently [5], [6],
[15], [16], [17] and a probabilistic framework like hidden
Markov model is often used for tracking [18], [19], [20], [21].

Extensive study of the problem of multiple-F0 estimation
leads us to conclude that there are three fundamental models
involved. (1)Source model: The use of harmonic patterns to
match the observed signal is the common technique for most of
the existing methods. Owing to the complex nature of musical
instrument sounds, it is necessary to adapt the harmonic pat-
terns ofym[n] to a variety of time-varying instrument sounds.
(2) Source interaction model: Since the partials of harmonic
sources may overlap, it is important to handle this situation
such that a combination of harmonic patterns can be more
reasonably matched to the observed signal. For simplicity,
many existing methods assume the additivity of linear/power
spectrum for the overlap of partials [22]. (3)Noise model: Few
attention is drawn to noise estimation. However, we believe
that an explicit noise modeling provides an appropriate means
for estimating the number of sourcesM ; whereas many of the
existing methods use heuristic thresholds related to the source
energy or the residual energy. The major drawback is that these
thresholds are not adaptive for different conditions of signal-
to-noise ratios. Others model the noise as white Gaussian noise
[8], [9] which is not appropriate for the colored noise that is
usually observed.

Following the physical/perceptual principles, we aim at
treating these key problems by proposing the algorithms for
noise estimation, harmonic matching adapted for polyphonic
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Fig. 1: Overview of the proposed multiple-F0 estimation system. Noise level estimation serves to distinguish the sinusoids from the noise
in the observed spectrum given by the fast Fourier transform(FFT) analysis. After selecting the F0 candidates, their possible combinations
are jointly evaluated and the number of sources is estimatedby a polyphony inference algorithm.

music signals and overlapping partial treatment. Another
well-known problem of F0 estimation is the prevention of
subharmonic/super-harmonic errors which is very challenging
while dealing with polyphonic signals. For example, common
subharmonics having the support from the partials of con-
current sources can compete with the correct F0s. Therefore.
complementary criteria are proposed to prevent these errors.
Instead of using heuristic thresholds, we propose to refer to
monophonic musical instrument sounds for deriving coherent
thresholds.

This paper is organized as follows. In Section II, The
overview of the proposed multiple-F0 estimation method is
given. Then, the algorithms in each part of the system are
presented: noise level estimation (Section III), joint evaluation
of F0 hypotheses (Section IV), candidate selection (Section
V) and polyphony inference (Section VI). In Section VII, the
evaluation results are presented, including the MIREX (Music
Information Retrieval Evaluation eXchange) 2008 and 2009
results. Finally, conclusions are drawn and perspectives are
discussed.

II. SYSTEM OVERVIEW

A frame-based multiple-F0 estimation system for single-
channel polyphonic music signals is to be presented (see
Fig.1). Such a system can later include temporal information
by means of a tracking mechanism to build continuous F0
trajectories, which can be used for automatic music transcrip-
tion, source separation, etc. The algorithms developed in the
system are based on the sinusoids plus noise signal model
of which the components are derived from spectral peaks
[23], [24]. Because the spectral peaks are representative of the
components generated from the harmonic sources, they give
a direct access to analyze the underling sources. The system
starts with adaptive noise level estimation which classifies the
spectral peaks into sinusoids and noise. The sinusoidal peaks
are considered partials of harmonic sources that a combination
of harmonic patterns related to F0 hypotheses will match.
To jointly evaluate a combination of hypothetical sources,
their partials are estimated by harmonic matching and the
overlapping partials are treated. Then, four criteria are used
together to score the plausibility of a hypothetical combination.
The polyphony hypothesis is progressively increased and all
possible combinations are evaluated. A candidate selection
method is also proposed such that the number of combinations
to evaluate is reasonably reduced. Finally, the most plausible
combination is determined by a polyphony inference algo-
rithm. The model assumptions made are listed in Table I.

observed signal represented as successive spectral peaks
classified as sinusoid/noise

noise model frequency-dependent envelope of limited cepstral
order applied to white noise

source model quasi-harmonic model with smooth spectral envelopes
interaction model the amplitude of overlapping partials determined by

the strongest source

TABLE I: Models and assumptions of the proposed method

III. A DAPTIVE NOISE LEVEL ESTIMATION

Contrary to most methods that do not explicitly model the
noise part of the signal, a probabilistic description of thenoise
level is proposed. If the noise part is not estimated beforehand,
the number of sources can be overestimated when unnecessary
sources simply explain the noise.

In a previous study the statistical properties of the deter-
ministic signals embedded in white Gaussian noise have been
derived and used to distinguish deterministic components from
noise in the spectrogram [25]. It makes use of the chi-squared
distribution to model the energy spectrum of noisy signals.
To be able to estimate the time-varying colored noise, we
take a different approach which makes use of the Rayleigh
distribution to model the spectral magnitude distributionof
noise [26]. The noise is understood as generated from white
noise filtered by a frequency-dependent spectral envelope;the
noise level is defined as the expected magnitude level of noise
peaks. It is assumed that the noise level is slowly varying
with frequency such that it can be modeled by means of
a Rayleigh distribution with frequency-dependent mode. A
Rayleigh random variable X has probability density function
[27]:

p(x) =
x

σ2
e−x2/(2σ2) with 0 6 x < ∞, σ > 0 (2)

Consider the Rayleigh random variableX as the observed
magnitudes of noise peaks in a narrow band, then theRayleigh
mode σ specifies the most frequently observed magnitudes of
noise peaks. The expected value of the noise spectrum is given
by

E[X ] = σ
√

π/2 (3)

which is referred to as (mean) noise level. Thepth percentile

xp = σ
√

−2 log(1 − p), 0 < p < 1 (4)

is referred to asnoise envelope which provides a threshold that
can be used to classify the sinusoidal peaks in the spectrum,
given the Rayleigh modeσ and a user selected control param-
eterp that determines the probability of misclassification.
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The main problem here is to establish an estimate of
the noise level given only the observed spectrum. Using
the spectral peak descriptors presented in [28], the sinusoids
obeying the allowed amplitude/frequency modulation ratescan
be detected [29]. The sinusoids are then removed from the
spectrum. The residual spectrum is expected to contain the
noise as well as the sinusoids with larger modulation rates.
For example, colliding sinusoids that represent the overlapping
partials of concurrent harmonic sources. These peaks can
further be distinguished by means of the statistical properties
of the Rayleigh distribution. To this end, an iterative approxi-
mation process of the noise level is proposed. According to the
relation between the Rayleigh mode and the expected value of
the log-amplitude spectrum [30]:

E[log X ] ≈ log(σ) + 0.058 (5)

the frequency-dependent expected amplitude of the residual
spectrum can be derived using eq.(3). Notice thatE[log X ]
can be estimated by means of cepstral liftering [31], [32].
In each iteration the residual amplitudes of the spectrum are
first normalized by the current estimate of the Rayleigh mode
and the spectrum is then tested against the hypothesis that it
follows a Rayleigh distribution. To achieve an efficient test
that can easily be evaluated in the iterative procedure, thetest
is based on statistical measures and makes use of the fact that
mean and variance of the Rayleigh distribution are coupled
through the Rayleigh mode. A straightforward approach is to
use skewness or kurtosis of which the definition implies both
mean and variance. Skewness, defined as the third moment
about the mean divided by the third power of the standard
deviation [33], is chosen. To increase the speed of the iterative
procedure the normalized spectrum is divided into subbands
of equal bandwidth2 and in each subband the skewness is
calculated and compared to the skewness of the Rayleigh
distribution

Skwrayl =
2(π − 3)

√
π

√

(4 − π)3
≅ 0.6311 (6)

If the observed skewness falls between0 andSkwrayl, the
distribution fit is considered achieved. Otherwise, the largest
outlier in the related subband is re-classified as sinusoid and
the noise level is updated accordingly. Since only a few
sinusoids are expected to remain in the residual spectrum, they
initially give rise to a negative skewness. As the outliers are
iteratively re-classified, the skewness is expected to increase
toward that of the Rayleigh distribution. When all the subbands
achieve the distribution fit, the noise level and the noise
envelope are obtained (see Fig. 2). The peaks above the noise
envelope are classified as sinusoids and those below it are
classified as noise. Notice that if the underlying noise level
varies significantly within a subband, the procedure may not
converge to a reasonable estimate.

IV. JOINT EVALUATION OF MULTIPLE F0 HYPOTHESES

Noise level estimation provides a probabilistic classification
of the spectral peaks into sinusoids, considered the partials of

2For the analysis frequency up to8kHz, 25 subbands are used empirically.
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Fig. 2: Estimated noise level for a polyphonic signal. The estimated
noise envelope Ln serves as the noise threshold which is user-
adjustable. For comparisons, the estimated Rayleigh mode Lσ and
the noise level Lm are also shown.

harmonic sources, and noise. Accordingly, a set of hypothetical
sources shall match as many sinusoidal peaks as possible. It
is proposed to jointly evaluate the plausibility of a set of F0
hypotheses, following the three physical/perceptual principles.
In this section, the description of the joint estimation algorithm
is focused on the case in which the number of sources is
given. The polyphony inference algorithm will later make use
of the jointly evaluated F0 hypotheses to estimate the number
of sources.

A. Hypothetical Partial Sequences

Given a set of F0 hypotheses, the frequencies and the
amplitudes of theirhypothetical partial sequences (HPS) are
estimated by two processes: (1) partial selection and (2)
overlapping partial treatment. The partial selection technique
is based on harmonic matching which is generally used for
single-F0 estimation [34]. It makes use of a spectral comb
with a regular interval of F0 to match the observed spectral
peaks. This technique is adopted here with several refinements
to construct hypothetical sources, such as inharmonic partial
adaptation (see Appendix A). To remove the ambiguity in the
overlapping partials of HPS, it is proposed to re-estimate,for
each hypothetical source that overlaps, the partial amplitudes
based on the interpolation of non-overlapping partials (see Fig.
3 and Appendix B).

B. Score Function

Following the guiding principles, we concentrate on de-
signing four score criteria to evaluate the plausibility of
hypothetical sources: harmonicity (HAR), mean bandwidth
(MBW), spectral centroid (SPC), and the standard deviationof
mean time (SYNC). Conceptually, each criterion is designed
to disfavor the F0 hypotheses that are either lower or higher
than the correct F0 according to the respective principle. The
idea is to have them work in a complementary way such that
the subharmonic/super-harmonic errors are prevented.
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Fig. 3: Hypothetical overlap treatment: (a) HPS constructed by partial
selection; (b) HPS after the treatment of the overlapping partials. The
lines illustrate the envelopes of the HPS.

1) Harmonicity: The score criterion HAR evaluates the har-
monic matching between the combination of the hypothetical
sources and the observed spectral peaks. To derive the har-
monic matching usingM hypothetical sources, their individual
deviation vectorsdm(i) (see eq.(14)) are first combined as
follows:

DM (i) = min
(

{dm(i)}M
m=1

)

, ∀i ∈ I (7)

whereI is the number of the peaks. That is, each observed
peak is matched with the closest partial among all HPS such
that the resulting combination explains the observed spectrum
with the lowest inharmonicity. HAR is then defined as the
weighted sum ofDM (i) for all peaks

HAR =

∑I
i=1 Spec(i) · DM (i)

∑I
i=1 Spec(i)

(8)

where thepeak salience, Spec(i), is the square-root of the sum
of linear amplitudes for all the bins within theith spectral
peak. The reason of not using the peak energy (the sum
of squared amplitudes) is to not emphasize the dynamics of
partial amplitudes. It is well known that harmonic matching
alone is not adequate for determining the best F0s because the
subharmonics will have competitive matching score. There-
fore, the following three criteria are designed to compensate
HAR.

2) Mean bandwidth: To score the spectral smoothness of a
hypothetical source, the frequency content of the envelopeof
a HPS is evaluated by means of its bandwidth. By assembling
the HPS with its mirrored sequence, a symmetrical sequence
gm with smooth transition in the middle is obtained (see Fig.
4(a)). ApplyingK-point3 FFT togm, the related spectrumGm

is acquired (see Fig. 4(b)). Mean bandwidth is then defined as
follows

MBWm =
1

K/2

√

√

√

√2 ·
∑K/2

k=1 k|Gm(k)|2
∑K/2

k=1 |Gm(k)|2
(9)

3Two times the next power of 2 of the length ofgm.
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Fig. 4: Spectral smoothness comparison between the HPS of the
correct F0 and that of the subharmonic F0/2. The demonstrated
sample is a clarinet sound playing the note Bb3.

which indicates the degree of energy spread in the high fre-
quency. In this way, the envelope ofgm with smaller variations
results in a smaller MBWm. The function of MBW is to
discriminate a correct F0 from its subharmonics. To further
illustrate the function of MBW, a clarinet sound signal is used
to demonstrate the difference in the envelope smoothness for
the HPS of F0 and the HPS of F0/2 (see Fig. 4). The resonance
structure of the clarinet sound does not result in a smooth
spectral envelope. Nevertheless, the envelope of F0/2 is less
smooth than that of F0. Compared with the HPS of F0, the
HPS of a subharmonic like F0/2 has higher frequency energy.
That is, the energy spreads more widely in frequency and
MBW is larger.

3) Spectral centroid: For harmonic instrument sounds, the
spectral centroid tends to lie around the lower partials because
the higher partials often decay gradually. According to this
general property related to the spectral smoothness principle,
the centroid can evaluate the energy spread of a HPS:

SPCm =
1

B/2

√

√

√

√2 ·
∑Nm

n=1 n[HPSm(n)]2
∑Nm

n=1[HPSm(n)]2
(10)

where Nm is the length of HPSm. B is a normalization
factor determined by⌊F90/F0min⌋. The spectral roll-off F90

stands for the frequency limit containing90% of spectral
energy in the analysis frequency range [35].F0min is the
minimal F0 hypothesis in search. Spectral centroid is designed
to prevent especially common subharmonic errors. A common
subharmonic may relate the partials of several sources to form
a smooth envelope, which is favored by MBW. However, SPC
tends to disfavor it because the related partials often spread
rather widely in frequency.

4) Synchronicity: To evaluate the synchronicity of the tem-
poral evolution of the partials in a HPS,mean time is estimated
for individual spectral peaks. Mean time is an indication of
the center of gravity of the signal energy [36]. It can be
defined in the frequency domain as the weighted sum of group
delays. The mean time of a spectral peak can be estimated by
considering only the frequency bins within a spectral peak,
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which can characterize the amplitude evolution of the related
source [37]. For a coherent HPS, the synchronous evolution of
partials is expected, which results in a small variance of mean
time w.r.t. the matched peaks. Themean time of a hypothetical
source, denoted byTm, is calculated as the power spectrum
weighted sum of the mean time of the hypothetical partials.
The standard deviation of the mean time of the partials is then
formulated as

SYNCm =
1

L/2

√

∑

i∈HPSm

{(t̄i − Tm)2 · wm(i)} (11)

whereL is the window size,̄ti denotes the mean time of the
ith observed peak. The weighting vectorwm is constructed
from the amplitudes of the HPS. The weight of overlapping
partials are set to zero because the spectral phases are possibly
disturbed. Since this criterion in some way makes use of
the randomness of noise to disfavor an incoherent HPS, an
exponential compression factor of0.23 is applied towm in
order to raise the significance of the noise components (see the
specific loudness descriptor in [35]). In this way,wm avoids
the use of the disturbed phases of overlapping partials, and
makes use of the spurious peaks to penalize a HPS matching
more noise peaks.wm is then normalized such that its sum is
one.

Notice that the three criteria presented so far are calculated
individually for each hypothetical source. To combine the
individual criteria into combinatorial ones (MBW, SPC and
SYNC), they are weighted by theeffective salience of the
respective hypothetical sources. The effective salience is the
sum of the peak salience of the related partials. The term
“effective” is used because the ambiguous partials have been
treated such that the impact of the other sound sources on
the related partials are at least partially removed. The score
function is then formulated as a linear combination of the four
criteria:

S = p1 · HAR + p2 · MBW + p3 · SPC+ p4 · SYNC (12)

where {pj}4
j=1 are the weighting parameters. Note that the

individual score criteria are nonlinear functions of the observed
spectra that have been carefully designed to achieve optimal
performance (spectral compression, overlap treatment, etc.).
Various implementations of the different criteria have been
tested and only the best set of criteria is presented here.
While a nonlinear combination of the criteria would certainly
improve the final result it would complicate the understanding
of the score function.

The four criteria are designed in a way that a smaller
weighted sum stands for a better score. HAR will slightly favor
subharmonic F0s but strongly disfavor super-harmonic F0s;
whereas MBW, SPC and SYNC strongly disfavor subharmonic
F0s and slightly favor super-harmonic F0s, making use of the
respective features of the signal. The weighting parameters are
trained to balance the relative support of each criterion such
that the score function generally ranks the correct combination
on top. The overall scoring mechanism thus remains easy to
comprehend.
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Fig. 5: Evaluation of the score function for the case when the
polyphony is given. The functioning of the score criteria are com-
pared: deactivation of MBW (no MBW), deactivation of SPC (no
SPC), deactivation of SYNC (no SYNC) and activation of all the
criteria (ALL).

C. Evaluation for the case when the polyphony is given

Following the evaluation scheme of [5], musical instrument
sound samples are semi-randomly mixed with equal energy to
create the evaluation database for the case when the polyphony
is given [6]. To train the weighting parameters{pj}4

j=1, 100
polyphonic samples for each polyphony from one to five are
created as the training database. The weighting parametersin
the score function are trained by the evolutionary algorithm
[38] and the parameter set resulting in the best performance4

is selected for the evaluation. The joint estimation algorithm
is tested for the polyphony from one to five (see Fig. 5). The
analysis window size is93ms and a correct estimate shall not
deviate from the ground truth by more than3% (a quarter-
tone range). To investigate how effectively MBW, SPC and
SYNC compensate HAR, a further test is carried out in which
one of the three criteria is deactivated. It is observed thatthe
deactivation of any of the three criteria degrades the overall
performance. The result also demonstrates the competitive
performance of the proposed algorithm compared to several
algorithms mentioned in [39] that are evaluated under a similar
scheme.

V. CANDIDATE SELECTION

The joint estimation algorithm has a computational concern
that the number of combinations grows exponentially with
the number of F0 candidates as well as the polyphony. If
the F0 candidates are, for instance, sampled on a1Hz grid
between50Hz and2000Hz, there will be more than one billion
combinations to evaluate for a polyphony of three. A proper
candidate selection helps to reduce unnecessary calculations
while keeping the robustness of an F0 estimation algorithm.
In this section, a candidate selection method is presented.The
underlying F0s are seen as two groups. For the F0s that are
multiples of another F0, they are harmonically related F0s

4{pj}4
j=1

= {0.3774, 0.2075, 0.2075, 0.2075}
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(HRF0s). Otherwise, they are non-harmonically related F0s
(NHRF0s). The partials related to a HRF0 are very likely to
be completely overlapped with other sources (e.g. the F0 of
1051Hz in Fig. 3); whereas those related to a NHRF0 are
only partly overlapped (e.g. the F0 of140Hz and264Hz in
Fig. 3). Following this concept, the candidate selection method
first extracts the set of NHRF0 sources that match most of
the sinusoidal peaks, followed by detecting probable HRF0
sources within the NHRF0 sources.

A. Extraction of Non-Harmonically Related F0 Candidates
(NHRF0s)

The extraction of NHRF0s involves three parts:
predominant-F0 estimation, the verification of an extracted
F0 candidate and a criterion to stop the iteration. For
predominant-F0 estimation, the score function is used as
a single-F0 estimator to extract the most probable F0. To
suppress an extracted source, the peak salience related
to its partials are set to zero. To avoid the extraction of
spurious candidates, theharmonic-to-noise ratio [32] related
to the predominant F0 is evaluated. The overlapping partials
are treated beforehand for a less ambiguous evaluation.
Similarly, the residual-to-noise ratio is calculated for all
the peaks that are not yet explained by the F0 candidates.
It is meant to indicate if any NHRF0 sources may remain.
Accordingly, the extraction process can be terminated when
the residual-to-noise ratio falls below a pre-defined threshold.
The F0-dependant thresholds for both ratios are trained on
the periodic parts and the noise parts of musical instrument
sound samples [40], respectively.

B. Detection of Harmonically Related F0 Candidates (HRF0s)

Each NHRF0 represents a harmonic group within which
HRF0s are to be extracted. It is assumed that as long
as a HRF0 source is dominant and disturbs the envelope
smoothness of the related NHRF0 source, it is reasonable to
consider the HRF0 to be an F0 candidate. The same concept
is proposed in [15] and the interpolated amplitudes are usedas
the reference envelope to measure how much the smoothness
is disturbed. The issue of this method is that the overlapping
partials may be used for interpolation. Since there are no
means to locate the overlapping partials in this stage, we
propose to refer to the tone models of musical instrument
sounds.

Using a collection of samples from McGill University
Master Samples, Iowa University Musical Instrument Samples,
IRCAM Studio On Line and RWC Musical Instrument Sound
Database [41], we group the observed signals according to two
types of tone models:strong-fundamental model and weak-
fundamental model. The strong-fundamental model is of a
strong fundamental, which represents a spectral envelope with
a fast decay for higher partials (see Fig. 6(b)). This corre-
sponds to the general pattern that is used in several existing
methods [14], [13], [17]. The weak-fundamental model is of
a weak fundamental, which represents a spectral envelope
with boosted partials at resonance frequencies higher thanthe
first partial (see Fig. 6(a)). In each group, the F0-dependent

tone models are trained over all instruments for musical notes
ranging from Ab1 to B6.

Given the HPS of a NHRF0, the matched tone model is
selected according to the least squared error. The partialsex-
ceeding the envelope of the tone model are possibly generated
from one or more HRF0 sources within the NHRF0 source.
Each partial position of the NHRF0 source is considered a
HRF0 hypothesis and if it relates to a significant amount of the
exceeding partials, it is extracted as a HRF0 candidate. To train
the threshold for the exceeding partials, we refer again to the
musical instrument sound samples and derive the appropriate
threshold. The threshold has been derived for each note and
for each partial position, averaging over all the instruments
[40].
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Fig. 6: Two types of tone models for the note E3: (a) weak-
fundamental model; and (b) strong-fundamental model. The x-axis
represents the partial index; the y-axis represents the relative ampli-
tude.

VI. POLYPHONY INFERENCE

The estimation of the number of sources is a critical problem
of multiple-F0 estimation. Our strategy is to progressively
increase the polyphony hypothesisM and calculate the score
of all possible combinations of F0 candidates. The scoring of
hypothetical combinations is used to select the most plausible
ones, among which the best combination is determined by
iteratively verifying the related F0 hypotheses to consolidate
the estimates. The estimation of the largest polyphony possible
Nmax relies on thescore improvement [4]. All the top-
five combinations (ranked by the score function), denoted by
{Cm}Nmax

m=1 , are retained for the consolidation of the final F0
estimates, denoted byF .

The inference algorithm begins with ranking the individual
F0 hypotheses found inCNmax

, denoted byH, in order of their
salience which is derived from the individual score weighted
by the appearing “frequency” inCNmax

. Beginning with the
most salient F0 hypothesis, each hypothesis is consecutively
combined with the current estimateF and verified according
to the following criteria.
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1) An additional NHRF0 source shall explain more than
noise: An added NHRF0 source is considered valid if the
reduction of theresidual salience ∆ER is larger than thenoise
salience Enoise. Both salience is calculated by summing the
peak salience of the respective residual or noise peaks. That
is, adding a NHRF0 source is reasonable as long as the non-
overlapping partials explain a significant amount of salient
peaks.

However, adding a source of HRF0 may not reflect a
significant∆ER if most of the partials are overlapped with
other sources. The second criterion is therefore proposed to
further validate the HRF0s.

2) An additional HRF0 source shall improve the spectral
smoothness: Adding a HRF0 source usually improves the
smoothness of the spectral envelopes of the previously selected
sources. However, a constraint is necessary to prevent adding
spurious HRF0s. To achieve this goal, it is proposed to derive
the constraint from the score criterion MBW of musical
instrument sounds. Given a harmonic sound, each partial
frequency is considered a HRF0 hypothesis. For each HRF0
hypothesis, the decrease of MBW (∆MBW) is calculated,
which is the difference of MBW before, denoted bymbwo,
and after, denoted bymbws, smoothing out5 the related
partials. For each analysis instance,mbwo of the correct
F0 and mbws of the HRF0 hypothesis that results in the
maximal ∆MBW are retained. For each musical note, the
calculatedmbws andmbwo are averaged for all the analysis
instances of all the instruments (see Fig. 7). The threshold
of the improvement of spectral smoothness is then defined
as∆mbw = (mbwo − mbws)/mbwo. Accordingly, an added
HRF0 source is considered valid if∆MBW > ∆mbw.
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Fig. 7: Comparison of MBW calculated from musical instrument
sounds: MBW of the original spectral envelopesmbwo and MBW
of the smoothed spectral envelopesmbws. The two thin curves are
second-order polynomial functions fitting the trained MBW data.

When an F0 hypothesis meets the requirements for a valid
estimate, it is removed from the hypothesis listH and added
into the set of the F0 estimatesF . During the progressive in-

5A smoothed out partial is replaced by the amplitude interpolation of its
adjacent partials.
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Fig. 8: Comparison of the accuracy rates between the MIREX’07
version and the presented version (MIREX’08). Both are evaluated
using 26 pieces of synthesized polyphonic music.

crease of the polyphony hypothesism, the algorithm searches
for the matched combinations in{Cm}Nmax

m=1 . When a matched
combination is no longer found, the consolidation process
stops. The polyphony is thus inferred along with the estimated
F0s. An algorithm flow can be found in [40].

VII. E VALUATION

A. Private Evaluation

A systematic method has been proposed to create a poly-
phonic music database to evaluate the proposed system [42].
In total, 26 pieces have been prepared for the evaluation.
The evaluation metrics take into account the estimation of the
number of sources [43] and theoverall accuracy rate is used
as the main criterion:

Acc =
Ncorr

Ncorr + Nmiss + Nsubs + Ninst
(13)

whereNcorr denotes the number of correctly estimated notes,
Nmiss denotes the number of missing notes,Nsubs denotes the
number of substitution notes, andNinst denotes the number
of insertion notes. Concurrent sources with their F0s related to
the same note are regarded as one single source. The system
is evaluated on a frame-by-frame basis, and a correct estimate
should not deviate from the ground truth by more than3%.

Tested on the synthesized polyphonic database, the proposed
system, which has been submitted for MIREX (Music Infor-
mation Retrieval Evaluation eXchange) 2008 [44], is compared
to the version submitted for MIREX 2007 [45] (see Fig.
8). The MIREX’07 version is an earlier implementation of
the proposed system. It has a slightly different polyphony
inference algorithm and it appears to bias low polyphony [46].
That is, it tends to use fewer sources to explain the observed
signal and the accuracy in the estimation of high polyphony
is not satisfactory. The proposed system uses the presented
polyphony inference algorithm, which improves significantly
the accuracy for the polyphony higher than 3. The average
accuracy rates of the MIREX’07 version and the presented
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ID RK CY∗ ZR PI1 EV2 CC1∗ SR EV1 PE1∗ PL∗ CC2∗ KE2 KE1 AC2∗ AC1∗ VE∗
Acc 0.605 0.589 0.582 0.580 0.543 0.510 0.484 0.466 0.444 0.394 0.359 0.336 0.327 0.311 0.277 0.145

TABLE II: The results of MIREX 2007: Multiple Fundamental Frequency Estimation & Tracking (frame-by-frame evaluation)

ID YRC2 YRC1∗ PI2 RK PI1 VBB DRD CL2∗ EOS EBD2 EBD1 MG CL1∗ RFF1 RFF2
Acc 0.665 0.619 0.618 0.613 0.596 0.540 0.495 0.487 0.467 0.452 0.447 0.427 0.358 0.211 0.183

TABLE III: The results of MIREX 2008: Multiple Fundamental Frequency Estimation & Tracking (frame-by-frame evaluation)

ID YRC2 RK PI2 PI1 VBB ZR1 ZR2 ZR3 EOS EBD2 EBD1 RFF1 RFF2
F-measure (Onset-Offset) 0.355 0.337 0.192 0.247 0.197 0.261 0.263 0.278 0.236 0.158 0.176 0.028 0.032
F-measure (Onset Only) 0.552 0.614 0.396 0.470 0.521 0.518 0.520 0.530 0.503 0.384 0.417 0.14 0.132

TABLE IV: The results of MIREX 2008: Multiple Fundamental Frequency Estimation & Tracking (note transcription)

system are56.56%, and64.75%, respectively. The presented
system has achieved an improvement of8% in accuracy.
However, the estimation for the polyphony higher than five
is still to be improved (see Fig. 9).

B. Public Evaluation

The public evaluation results of MIREX 2007 and 2008 for
the subtask “frame-by-frame evaluation” are listed in Table
II and III, respectively. The participants are denoted by the
team IDs with numeric labels denoting different versions of
the submitted systems. The∗ mark indicates that no temporal
continuity is used in the process. The evaluation database for
MIREX 2007 is composed of 20 pieces of real recordings
and 8 pieces of synthesized music; the database for MIREX
2008 is composed of 28 pieces of real recordings and 8 pieces
of synthesized music. In order to compare the results, it is
suggested to use RK as the baseline method because the same
version has been submitted for both years [47]. The authors’
team ID is CY in 2007 and YRC in 2008. CY and YRC1 refer
to the frame-based multiple-F0 estimation system presented,
whereas YRC2 further includes a tracking algorithm [21]. In
both evaluations, the proposed system CY/YRC and the other
two, RK and PI [17], are ranked at top positions, with a
significant accuracy gap (5% and above) compared with the
rest of the systems. Notice that PI follows the similar scheme
as our joint estimation approach, whereas RK is based on
an iterative estimation approach [19]. The gain in accuracy
appears more significant in the result of the second subtask:
note transcription (see Table IV). In this evaluation, a system
shall report the onset time, offset time and the average F0
of each note. A total of 30 files were used in this task: 22
real recordings (including 6 piano solos) and 8 pieces of
synthesized music. The evaluation criterion is the F-measure
[20]. A note is correctly estimated if its F0 does not deviate
from the ground truth by more than3% and the onset/offset
time is within ±50ms range of the ground truth. It is found
that the proposed system has a rather precise estimation of the
offsets. This result strongly demonstrates the advantage of the
adaptive noise estimation and the coherent thresholds derived
from musical instrument sounds that allow to detect harmonic
sources of relatively weak energy. However, our tracking
algorithm does not yet include a probabilistic descriptionof
the onsets and is expected to be improved.
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Fig. 9: The distribution of the estimated polyphony for the polyphony
from 1 to 6. The title of each subfigure indicates the correct
polyphony; the x-axis represents the estimated polyphony;the y-
axis represents the percentage of the estimated polyphony among
all instances. The peaking at the correct polyphony is observed for
the polyphony below five.

The MIREX results contain measured runtime for all algo-
rithms. When comparing runtime of the algorithms, however,
one has to take into account that the software means that are
used to implement the different algorithms have a significant
impact on the runtime. Therefore, the MIREX runtime results
have to be treated very cautiously. It is clear, however, that
the algorithm presented here will always be relatively costly
because for a target polyphonyM and N F0 candidates it
has to evaluate in the order of

(

N
M

)

possibilities, while the
iterative algorithms like RK will test only in the order ofNM
possibilities. For the detailed list of the participants and the
description of their methods, readers are invited to consult the
MIREX webpage and the related articles (AC in [10], EV and
VBB in [12], KE and EOS in [14], PE in [43], PL in [48],
SR in [11], VE and EBB [20], ZR in [15], etc.).
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VIII. C ONCLUSIONS ANDPERSPECTIVES

We have presented a frame-based multiple-F0 estimation
system which analyzes polyphonic music sound signals. The
development of the algorithms follows three guiding principles
related to the physical properties of harmonic instrument
sounds: harmonicity, spectral smoothness and synchronicity.
Several key problems have been treated: noise estimation,
harmonic matching adaptive to inharmonic partials, over-
lapping partial treatment, prevention of subharmonic/super-
harmonic errors, the estimation of the number of sources,
etc. We have also suggested the derivation of thresholds from
musical instrument sound samples, which is coherent for the
analysis of polyphonic music signals. The evaluation results
demonstrate the competitive performance among the state-of-
the-art methods.

The proposed F0 estimation system can be improved in
two aspects. The joint evaluation part and the polyphony
inference part could be combined in aniterative combina-
tion/consolidation manner. Given a list of F0 candidates, one
may iteratively evaluate the validity of an added F0 hypothesis
in a hypothetical combination. To develop an efficient and
robust algorithm, a strategy to, for each iteration, replace less
likely F0 hypotheses with more probable ones is necessary.
The other possibility is to enhance the tracking mechanism.

Most of the research on multiple-F0 estimation aims at
using it as the core component within an automatic music
transcription system which integrates low-level analysesinto
a high-level representation as a musical score. The develop-
ment of an automatic music transcription system requires the
integration of the existing MIR (Music Information Retrieval)
algorithms such as key estimation, tempo/meter estimation,
instrument recognition, etc. In fact, these algorithms mayprofit
from each other to optimize the estimates. For example, an
initial guess of the musical instruments can help to extract
the underlying F0s. The extracted F0s and the related spectral
envelopes can then be used to refine the initial guess of the
instruments, which will again help to refine the F0s. Multiple-
F0 estimation is especially associated with the following MIR
tasks: instrument recognition, melody extraction, key estima-
tion and chord estimation. Other potential applications include
the separation/transformation of individual sound sources in a
recording, the automatic alignment of a polyphonic recording
with a given musical score, etc.

APPENDIX A
HARMONIC MATCHING FOR PARTIAL SELECTION

The source model related to an F0 hypothesis is a set of
harmonic grids without specific amplitudes. Given a set of
F0 hypotheses, the frequencies and the amplitudes of their
partials are to be estimated. The degree of harmonic matching
in frequency is evaluated between the model harmonics and
the observed peaks. A tolerance interval [49] is designated
in the neighborhood of each model harmonic, which allows
the inharmonic partials. The spectral peaks situated in the
tolerance interval are considered thematched peaks, otherwise
the unmatched ones. For a hypothetical source indexed bym,

(1 − α)fh fh (1 + α)fh (1 − α)fh+1 fh+1 (1 + α)fh+1

∆max

∆min

Fig. 10: The allowed frequency differences of two adjacent partials
that match to the model harmonics (the two thick vertical lines). The
allowed maximum is∆max, whereas the allowed minimum is∆min.
The tolerance interval is defined between the dash lines around a
model harmonic.

the degree of deviation of the ith observed peak from thehth
harmonic is expressed as

dm(i) =

{

|fi−fm,h|
αhfm,h

if |fi − fm,h| < αhfm,h,
1 otherwise.

(14)

where fi is the frequency of theith observed peak and
fm,h is the frequency of thehth harmonic of the model,
and αh determines the tolerance interval2αhfm,h. When an
observed peak situates outside the related tolerance interval, it
is regarded as unmatched anddm(i) is set to 1. Therefore,
0 ≤ dm(i) ≤ 1. Since the partials may deviate from the
ideal model harmonics (multiples of F0) due to inharmonicity
or frequency modulation, it is necessary to adapt the model
harmonics. If thehth harmonic matches theith peak, the
(h+1)th harmonic frequency is updated byfm,h+1 = fi+fm

wherefm denotes the F0 value. If thehth harmonic does not
match any observed peaks, the(h+1)th harmonic frequency is
updated byfm,h+1 = fm,h + fm. Moreover, since the partials
of different sources may fall into one tolerance interval, it is
necessary to select the best one for a given F0 hypothesis. The
proposed partial selection technique begins with assigning the
first partial to the nearest peak. For the consecutive partials,
two peak candidates are considered: the nearest one, and
the one of which the mainlobe covers the related model
harmonic. By means of comparing the average amplitude of
the previously selected three partials with the amplitudesof the
two peak candidates, the peak candidate of a closer amplitude
value is selected because it is considered to form a smoother
envelope. When no matched peaks are found for a partial, its
amplitude is estimated by the interpolation of the neighboring
frequency bins around the harmonic frequency.

In the case of monophonic signals,αh can be set in a way
that the tolerance interval equals the F0 to allow inharmonic
partials, while prohibiting the overlaps of the tolerance inter-
vals of adjacent harmonics. In the case of polyphonic signals,
however,αh shall be determined in a more precise way to
prevent excessive partials of concurrent sources to fall into
the same tolerance interval. For a convenient expression, the
source indexm for the related harmonics is ignored here.
Assuming that the valuesαh are similar for adjacent partials,
i.e. αh ≈ α, it is proposed to pose a constraint on the
frequency difference of two adjacent partials (see Fig. 10).
With the allowed tolerance intervals, the maximum and the
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minimum of the frequency difference between two adjacent
partials are

∆max = (1 + α)fh+1 − (1 − α)fh ≈ fm + (2h + 1)αfm

∆min = (1 − α)fh+1 − (1 + α)fh ≈ fm − (2h + 1)αfm

in which the approximationsfh+1 − fh ≈ fm andfh+1 +
fh ≈ (2h + 1)fm are used. The allowed frequency difference
(half of the tolerance interval) for a peak to match a harmonic
is thus(2h + 1)αhfm. Then,αh can be selected according to

αh(2h + 1) ≤ β (15)

whereβ is set 0.3. For the tolerance intervals of lower partials,
a minimum constraint is further set according to a quarter-tone
frequency resolution. That is,αh = 21/24 − 1 = 0.029 for the
first four partials.

APPENDIX B
HYPOTHETICAL OVERLAP TREATMENT

Partial selection estimates the frequencies and amplitudes
of the HPS based on harmonic matching. However, the am-
plitudes of the overlapping partials are ambiguous. Given
a combination of hypothetical sources, the positions of the
overlapping partials can be easily inferred and the related
amplitudes can thus be corrected. The idea is to make the best
of the unambiguous information about the non-overlapping
partials to remove the ambiguity in the overlapping partials. It
is assumed that an overlapping partial still carries important in-
formation about at least the HPS that locally has the strongest
energy [50]. Therefore, the overlapping partial treatmentaims
at allocating the overlapping partial amplitude for this HPS.
Based on the spectral smoothness principle, the method to
estimate the amplitudes in the overlap positions is described
below:

– Partials having potential collisions are determined by the
peaks that match to more than one hypothetical source.
The overlap treatment is carried out in order of the partial
frequency.

– In each overlap position, thelocal energy of each HPS is
estimated in terms of the interpolation of the amplitudes
of the neighboring partials that do not overlap [51].
The amplitude of the overlapping partial is exclusively
assigned to the HPS with the largest local energy. The
overlapping partial of that HPS is labeled ascredible and
is used like a non-overlapping partial for the consecutive
interpolation. This is meant to use as many credible
partials as possible for the consecutive overlap treatment.
For the rest of the colliding sources, their amplitudes in
the overlap position are estimated by the interpolated am-
plitudes respectively. This is meant to maintain the local
smoothness of the envelope for the partial amplitudes that
can not be easily inferred.

– When one of the neighboring partials is overlapped,
the amplitude of the non-overlapping one determines
the local energy. If both of the neighboring partials are
overlapped, the partial for the related source is considered
not credible. In this case, its amplitude is estimated

by the interpolated amplitude if the overlapping partial
amplitude is larger than the interpolation.

– When the amplitude of the overlapping partial is smaller
than all the interpolated amplitudes of the colliding
sources, it is difficult to infer which hypothetical source
contributes the most. In this case, the colliding sources
share the overlapping partial. The overlapping partial
in all HPS is labeled as credible for the consecutive
interpolation.
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