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Abstract

Individual head-related transfer functions (HRTFs) allow for an accurate representation of
three-dimensional audio scenes via headphones. Given the high spatial resolution necessary
for good localization results, a set of HRTFs usually comprises a large number of impulse
responses (FIR filters), one filter pair for every measured source direction. This leads to a very
long measurement duration, because every acoustic path has to be measured separately. Fur-
thermore, the resulting large sets of filters require a high memory capacity. A more compact
representation using high-quality interpolation of HRTFs is hence desirable. Interpolation of
HRTFs is typically performed using a decomposition into onset delays and minimum phase
components prior to the interpolation itself. In this thesis, an interpolation of unmodified
HRTFs is investigated, using an adapted discrete spherical harmonic transform. In doing so,
suitable HRTF features that are to be interpolated, e.g. time-delay and attenuation, deserve
some notice as to avoid undesired artifacts. Especially the unwrapped phase, which can be
considered as a frequency-dependent temporal delay, is intensely investigated. As a result of
this investigation, a spherical phase unwrapping algorithm based on the concept of neigh-
bouring points is presented. The results are verified via psychoacoustical error measures using
measured and simulated HRTFs.

Zusammenfassung

Individuelle kopfbezogene Übertragungsfunktionen (HRTFs) ermöglichen eine sehr genaue
Wiedergabe von dreidimensionalen Schallfeldern über Kopfhörer. Aufgrund der hohen räum-
lichen Auflösung, die für gute Lokalisationsergebnisse nötig ist, umfasst ein Satz von HRTFs
üblicherweise eine hohe Anzahl an Impulsantworten (FIR-Filter), ein Paar für jede gemessene
Richtung. Dies führt zu einer sehr langen Messdauer, da jeder akustische Übertragungspfad
separat gemessen werden muss. Zudem benötigen die resultierenden Filtersätze viel Spe-
icherplatz. Eine kompaktere Darstellung mittels hochqualitativer Interpolation von HRTFs
ist daher wünschenswert. HRTFs werden üblicherweise interpoliert, indem vor der Interpola-
tion selbst eine Zerlegung in Laufzeiten und minimalphasige Komponenten durchgeführt wird.
In dieser Arbeit wird die Interpolation von unveränderten HRTFs mittels einer angepassten
diskreten Spherical Harmonic Transformation untersucht. Dabei bedürfen zu interpolierende
HRTF-Eigenschaften, z.B. zeitliche Verzögerung und Abdämpfung, besonderer Beachtung um
unerwünschte Artefakte zu vermeiden. Insbesondere die abgerollte ’unwrapped ’ Phase, welche
als frequenzabhängige zeitliche Verzögerung betrachtet werden kann, wird intensiv untersucht.
Als Resultat dieser Untersuchung wird ein Algorithmus für Phase Unwrapping über der Kugel
präsentiert, der auf dem Konzept der geometrischen Nachbarschaft basiert. Die Ergebnisse
werden mittels psychoakustischer Fehlermaße für simulierte und gemessene HRTFs überprüft.
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Chapter 1

Introduction

The initial motivation for the work documented in this thesis was the idea of finding an ideal
representation of the head-related transfer functions (HRTFs) in space. Since HRTFs are very
complex spatial filters, they have to be measured with a high spatial resolution, i.e. for many
spherically distributed sampling positions. Ideal in this context hence refers to a compact and
spatially continuous representation that facilitates accurate interpolation using as few spatial
sampling positions as possible. This can be useful concerning a possible reduction of the nec-
essary measurement sampling grid, thus reducing the measurement duration, which is typically
between 30 and 60 minutes. Moreover, a compact representation of HRTFs is beneficial in
terms of computing power, particularly when the filtering is to be applied in real-time.
Partly based on the work of Evans et al. [EAT98], who investigated the performance of the
discrete spherical harmonic transform (DSHT) concerning the interpolation of different HRTF
features, a basic concept was established. The human auditory system localizes sound sources
using the spectral shaping caused by the head and body and the frequency-dependent prop-
agation delay. An interpolation of the HRTFs’ magnitude responses and group delays should
therefore be well-adapted to the human perception. A compact and spatially continuous repre-
sentation of the transfer functions measured at discrete locations can be realized using DSHT.
Slight symmetry properties of the spatial group delay distribution can be enforced utilizing
symmetries of the spherical harmonic functions. The alignment of the respective symmetry
properties is achieved by rotating the basis functions, which is meant to support a compact
representation or manipulation referring to symmetry.
The group delay of the HRTFs is not directly accessible and its calculation is very prone to
errors. The frequency-dependent propagation delay can also be represented by the absolute
phase. As only the wrapped phase is accessible, phase unwrapping has to be applied to cal-
culate the absolute phase. Phase unwrapping is a very delicate procedure and will hence be
intensely investigated. Phase unwrapping over the sphere will be presented and compared to
the typically employed spectral phase unwrapping.

6



Introduction 7

The structure of the thesis is summarized as follows.
chapter 2 introduces the head-related transfer functions, discusses their features concerning
their significance for human sound source localization and defines the employed coordinate
system. Further, the commonly used minimum phase and delay approximation of HRTFs is
discussed and the interpolation approach using unmodified HRTFs is investigated. Addition-
ally, a review of the related work of Evans et al. is provided.
Chapter 3 presents the adapted discrete spherical harmonic transform. This requires an inves-
tigation of the ideal band limitation and a verification of the assumptions about the suitability
of different HRTF representations for the DSHT using simple simulated filters.
Chapter 4 contains an investigation of spectral phase unwrapping with regard to its impacts
on the spatial phase continuity. The theory of phase unwrapping is explained in general and a
spherical approach to phase unwrapping is derived and briefly discussed.
Chapter 5 compares spectral and spherical phase unwrapping with regard to spatial phase
continuity. Furthermore, the suitability of the resulting unwrapped phase responses for the
DSHT is discussed.
In chapter 6, the suitability of different HRTF representations for the DSHT is evaluated by
means of psychoacoustically motivated error measures. Further, the spherical harmonics re-
quired for the investigated HRTF representations are compared.
Chapter 7 concludes the thesis by summarizing and interpreting the results and provides an
outlook to further work on the issues discussed in this thesis.



Chapter 2

Head-Related Transfer Functions

2.1 Basics

Localization cues. Research on human sound source localization suggests that the human
auditory system uses different types of primary localization cues. According to the classic ’du-
plex theory’ [MM02], the lateral position (see figure 2.2.1) is determined using the interaural
time difference (ITD) for frequencies below 1.3kHz and using the interaural level difference
(ILD) for frequencies above 1.3kHz. The ITD represents the propagation delay between the
ears and can only be detected without ambiguity if the wavelength λ is smaller than the length
of the acoustic path between the ears. Assuming a head diameter of 17cm, this results in a
maximal frequency of ∼ 1.3kHz. The ILD represents frequency-dependent level differences
between the ears, which result from shadowing effects for smaller wavelengths caused by the
head. The binaural ITD and ILD cues do not provide information concerning the elevation of
a sound source since only the lateral position is detected. Consequently, the detected posi-
tion could lie anywhere in the respective sagittal plane, a plane parallel to the median plane
(see figure 2.1.1(a)). This ambiguity is known as the ’cone of confusion’, depicted in figure
2.1.1(b). The filtering effect of the pinna is a disambiguating localization cue, mostly in the
frequency-region between 4kHz and 8kHz, which provides information about the position of
a sound source on the cone of confusion and is particularly important in the median plane,
where ITD and ILD are zero.
A problem that remains is the front-back-ambiguity, which has been reported in psychoa-

coustic studies using static filtering. Wightman and Kistler investigated this phenomenon
in [FLW99]. Results suggest that humans resolve these ambiguities with small head move-
ments in reality. This can only be reproduced by using interaction of head movements with
suitable time-variant filtering.

8
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(a) Planes and axes (b) Cone of confusion

Figure 2.1.1: Human sound source localization: Spatial definitions [Wes]

HRTFs and HRIRs. The filtering characteristics of the human head and body can be
simulated by a set of filters measured on a dense sampling grid on a surrounding sphere. These
filters are called head-related transfer functions (HRTFs) or head-related impulse responses
(HRIRs). HRTFs are functions of the direction vector θ and the frequency, denoted asH(θ, f),
while HRIRs depend on position and time, denoted as h(θ, t). The distance of sound sources
is usually neglected for the commonly used far-field HRTFs, which have to be measured at a
minimum distance of 1m to the center of the head. Independent of frequency or time domain
representation, the head-related filters are called HRTFs in the following. When both terms
are used, HRTFs refer to the frequency domain representation and HRIRs to the time domain
representation.

2.2 Coordinate Systems

Since the spatial representation, properties and manipulation of HRTFs is the key interest of
this thesis, the three-dimensional spherical coordinate system that will be used throughout the
thesis is introduced in this section.

Cartesian coordinate system. A typical definition of a subjective Cartesian coordinate
system is right handed, with the x-axis pointing in the viewing direction and the y-axis corre-
sponding to the interaural axis, see figure 2.2.1(a).

Interaural polar coordinate system. The interaural polar coordinate system fits well
with the human perception of sound sources in space, and is thus often used in psychoacoustic
considerations. Every angular position is expressed via two angles. The angles reflect the
spatial descent of the different localization cues: The ITD and ILD depend on the lateral
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x

y

z

(a) Cartesian (b) Interaural polar

Figure 2.2.1: Coordinate systems

angle α, while the spectral cues depend mainly on the polar plane angle β, see figure 2.2.1(b).

The conversion from Cartesian to interaural polar coordinates is perfomed as follows

α = arctan

(√
x2 + z2

y

)
,

β = arctan
(z
x

)
, (2.2.1)

r =
√
x2 + y2 + z2.

Inversely, the conversion from interaural polar to Cartesian coordinates can be written as

x = r sinα cos β,

y = r cosα, (2.2.2)

z = r sinα sin β.

The distance variable r will be neglected in the following.

2.3 Interpolation Approaches

The interpolation of HRTFs has been widely discussed in literature in terms of its psychoacous-
tical limits, which naturally have physical reasons since the human auditory system is restricted
to the available acoustic information. This raises the question, how many measurement points
are necessary to generate the impression of an acoustic real-world situation, which has been
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investigated by Minnaar et al. [MPC05]. The accuracy of the interpolation strongly depends
on the distribution of the sampling positions and on the quality of the interpolation procedure.
There are two main approaches to the spatial interpolation of HRTFs. The local approaches
generate an interpolation between the adjacent filters of the desired position, while the global
approaches, on the other hand, take all filters into account.

The following paragraphs focus on the question, which representation of HRTFs is most suit-
able for interpolation in general. A brief example is demonstrated dealing with a local interpo-
lation between two filters. A similar behaviour can be assumed for the global interpolation via
discrete spherical harmonic transform, the approach that is the matter of the investigations.

2.3.1 Common Approach Neglecting All-Pass Components

A very common method for the interpolation and real-time processing of HRTF filters is
based on the assumption that they can be sufficiently approximated by their minimum phase
counterpart and an onset delay, which is often referred to as excess phase in literature. This
assumption has largely been verified in psychoacoustic experiments [KIC99,TM08] and via sim-
ulation [NKA08]. Prior to the interpolation itself, a decomposition of the HRTFs is performed,
which manipulates the phase response of the filters and thus simplifies their structure.

HRTF decomposition. A discrete complex HRTF spectrum H[ωl] can be split into mag-
nitude |H[ωl]| and phase φ[ωl]

H[ωl] = |H[ωl]| ejφ[ωl], φ[ωl] = arctan

(
={H[ωl]}
<{H[ωl]}

)
,

where ωl = 2π l
L
fs (with sampling rate fs, the length of the discrete Fourier transform L and

the discrete frequency bins l = 0, 1, ..., L − 1) and = and < denote the imaginary and
real part, respectively. The phase can be further decomposed into minimum phase and excess
phase (see annex, chapter 8.1, for the calculation of the minimum phase)

H[ωl] = |H[ωl]| ejφmin[ωl] ejφexcess[ωl],

where φexcess[ωl] = φ[ωl]− φmin[ωl]. The assumption for the simplification of the filters is

φexcess[ωl] = φlin[ωl], (2.3.1)

where the linear phase
φlin[ωl] = −ωl τ
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represents the temporal onset delay τ of the corresponding impulse response h[k] (see annex,
chapter 8.2, for the calculation of τ). The modified HRIR hmod[k] can now be represented by
its minimum phase version

hmin[k] = IDFT{|H[ωl]| ejφmin[ωl]}

and the onset delay τ , in mathematical terms a convolution of hmin[k] with a unit impulse
delayed by τ in samples

hmod[k] = δ[k − τ ] ∗ hmin[k],

where k denotes the discrete temporal samples.
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(a) Original impulse response h and onset delay τ
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set delay τ

Figure 2.3.1: Minimum phase and delay decomposition of an HRIR

The spatial interpolation is applied to the delay τ and the minimum phase HRIRs separately.
The interpolation result is then obtained similarly by convolving the interpolated time-shift
with the interpolated minimum phase HRIR.

Advantages. This decomposition of the HRIRs leads to advantages concerning the interpo-
lation and also the real-time rendering of HRIRs, because the minimum phase versions provide
a) perfect temporal alignment, which is crucial for accurate time domain interpolation, and
b) the least possible amount of important filter samples, which facilitates a reduction of the
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filter length and thus reduces the computational complexity.

Drawbacks. Since HRTFs are in fact mixed-phase systems, i.e. non-minimum phase in
nature [Bus06,NKA08], the basic assumption from equation 2.3.1 concerning the excess phase
cannot be verified [NKA08]. The original phase typically splits into three parts

φ[ωl] = φmin[ωl] + φlin[ωl] + φap[ωl],

where φap[ωl] is the all-pass phase that has been neglected above. Provided the extracted
onset delay matches the low-frequency group delay, the modification of the phase response
does not have significant perceptual consequences [KIC99,TM08]. Nevertheless, the detection
or simulation of the onset delay [BNK05] is a very delicate task, which requires maximal
accuracy since errors directly influence the ITD = τright − τleft, leading to lateral changes in
the perceived direction. Moreover, the temporal resolution depends on the sampling frequency
in time-discrete signal processing, e.g. 23µs at fs = 44.1kHz, which results in small ITD errors
due to rounding.

2.3.2 Approach Including all Components

In this thesis, an alternative method for the interpolation of HRIRs is investigated, using
the unmodified, original impulse responses. This section compares the interpolation accuracy
resulting from the interpolation of different filter representations.

Depending on the distance between the source position and the ear, HRTF-filters have different
onset delays and peak levels. In order to clarify the basic interpolation characteristics, two
simple impulse responses h1[k] and h2[k] are considered (figure 2.3.2). h2[k] = 0.6 δ(k− 4) ∗
h1[k] is an attenuated version of h1[k], temporally shifted by 4 samples.
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Figure 2.3.2: Exemplary impulse responses
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The optimal interpolation result is defined as the mean of amplitude and temporal displace-
ment, hopt[k] = 0.8 δ[k − 2] ∗ h1[k].

Direct interpolation of HRIRs. A very simple approach is to directly interpolate the im-
pulse responses. In mathematical terms, the interpolated impulse response hint[k] is calculated
as the mean of h1[k] and h2[k]

hint[k] =
h1[k] + h2[k]

2
.

The problem of this interpolation technique becomes quite obvious in figure 2.3.3. Unless the
impulse responses are temporally aligned, which cannot be assumed for HRIRs, the interpola-
tion crossfades the adjacent peaks instead of shifting them in time and adjusting their levels,
leading to comb filters. Although h1[k] and h2[k] are quite unrealistic examples in terms of
the temporal displacement, this example shows that the direct interpolation method is not
adequate for HRIRs.
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Figure 2.3.3: Result of direct HRIR interpolation

Interpolation of unwrapped phase and magnitude. A very different approach is an
interpolation of the HRTFs using a spectral representation. More precisely, the spectrum is
decomposed into magnitude |H[ωl]| and unwrapped phase Φ[ωl]

H[ωl] = |H[ωl]| ejΦ[ωl],

where Φ denotes the unwrapped version of the phase angle φ,

Φ[ωl] = 2πη + φ[ωl].
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η ∈ Z is an integer variable defined according to the constraint that the absolute difference
between two adjacent frequency bins must not be greater than π

|Φ[ωl]− Φ[ωl−1]| ≤ π.

The phase angle φ[ωl] = arctan
(
={H[ωl]}
<{H[ωl]}

)
, which is also referred to as wrapped phase,

can be derived from the spectrum. It lies in the interval ] − π, π] and typically represents
a discontinuous function of frequency. By contrast, the unwrapped phase is continuously
distributed over frequency. The wrapped phase can be calculated from the unwrapped phase
via the phase-wrapping operator W , also known as the principle phase argument function:

φ = W(Φ)

= mod2π(Φ + π)− π. (2.3.2)

The unwrapped phase is related to the group delay τG via integration

Φ(ω) = −
∫
τG(ω)dω ⇐⇒ Φ[ωl] = −2π

L

l∑
i=0

τG[ωi] ,

where ω = 2πf . The inverse transformation writes as

τG(ω) = −∂Φ(ω)

∂ω
⇐⇒ τG[ωl] = − [Φ[ωl]− Φ[ωl−1] ]

L

2π
.

The unwrapped phase can be considered as a frequency dependent temporal measure similar
to the group delay. That leaves us with a representation of the HRTFs as magnitude |H[ωl]|
and ’temporal delay’ Φ[ωl ] for every discrete frequency ωl of the spectrum. The interpolation
can now be applied using the discrete spectra of the impulse responses, H1[ωl] and H2[ωl],
and separately interpolating magnitude and unwrapped phase values

|Hint[ωl]| =
|H1[ωl]|+ |H2[ωl]|

2
,

Φint[ωl] =
Φ1[ωl] + Φ2[ωl]

2
.

The original and interpolated magnitude and phase responses are shown in figure 2.3.4; obvi-
ously, the interpolated versions |Hint[ωl]| and Φint[ωl] match the optimal solutions |Hopt[ωl]|
and Φopt[ωl].

Using interpolated magnitude |Hint| and interpolated unwrapped phase Φint, the resulting filter
impulse response can now be calculated by the inverse discrete fourier transform (IDFT )

hint[k] = IDFT{|Hint[ωl]| ejΦint[ωl]}. (2.3.3)
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Figure 2.3.4: Interpolation of magnitude and unwrapped phase

As can be observed in figure 2.3.5, the interpolation of the magnitude and unwrapped phase
representation seems to achieve a very accurate result. The onset of the resulting impulse
response hint[k] lies exactly between those of h1[k] and h2[k], while the shape is the same that
an interpolation of temporally aligned filters would provide. It therefore exactly matches the
previously defined optimal interpolation solution hopt[k]. Hence, the magnitude and unwrapped
phase approach clearly outperforms the direct interpolation of HRIRs without needing any kind
of prior modification of the filters, as opposed to the minimum phase and delay approach.
Note that this interpolation assumes that time shifting and magnitude interpolation is the
most probable that will happen. It will not cover the case when spectral valleys or peaks are
moving with respect frequency.
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Figure 2.3.5: Resulting impulse response of magnitude and unwrapped phase interpolation

2.4 Evans’ Results

Global interpolation of HRTFs can be performed using the discrete spherical harmonic trans-
form. Further information on the discrete spherical harmonic transform and the corresponding
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nomenclature is given in chapter 3.
Evans et al. analyzed the reconstruction and interpolation performance of the discrete spher-
ical harmonic transform of HRTFs [EAT98]. They used dummy head measurements on a
spherical sampling grid with 10̊ -spacing in azimuth and the corresponding elevation angles
resulting from Gaussian quadrature. The HRTFs were sampled with fs = 20.2kHz, leading
to a maximal representable frequency of fs/2 = 10.1kHz. Three different types of HRTF
representations were used, 1) HRIRs, 2) ITD-equalized HRIRs and 3) HRTF magnitude and
unwrapped phase. The ITD-equalized HRIRs are the original HRIRs without the onset delay.
The maximal spherical harmonic order was set to N = 17.

The results suggest that magnitude and unwrapped phase are best suited for an accurate
representation of HRTFs using the discrete spherical harmonic transform. The article also
contains some interesting results concerning the most important spherical harmonic orders.
They evaluated this by defining a spherical harmonic spectrum (SHS) as the mean energy
contained within the components of each order. The maximum values over time were used
for the SHS of HRIRs and ITD-equalized HRIRs and the maximum values over frequency for
the SHSs of magnitude and unwrapped phase.

While the SHS of the HRIRs in figure 2.4.1(a) reflects a rather large importance of the high-
order components, the SHS of the ITD-equalized HRIRs in figure 2.4.1(b) decreases very
steeply. Since the significance of high-order components is proportional to the complexity
of the spherical pattern, this seems logical considering the temporal alignment of the ITD-
equalized HRIRs.

(a) Maxima of impulse responses over time (b) Maxima of ITD-equalized impulse responses over
time

Figure 2.4.1: Spherical harmonic spectra from Evans et al. [EAT98]

The SHS of the HRTF magnitude in figure 2.4.2(a) also seems surprisingly steep. The crucial
information seems to be contained in the basis functions up to order 5; considering the im-
portance of spectral cues for the fine localization on the cone of confusion, one may expect a
more complex spherical pattern resulting in higher values of high-order components. The SHS
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of the unwrapped phase in figure 2.4.2(b) even reflects a very low significance of components
with a higher order than 1.

(a) Maxima of magnitude over frequency (b) Maxima of unwrapped phase over frequency

Figure 2.4.2: Spherical harmonic spectra from Evans et al. [EAT98]

These results lead to the question up to which order the spherical harmonics significantly
contribute to an accurate representation of HRTFs. The maximal spherical harmonic order
might be reducible to N = 5 in this case without a significant loss of information, given an
appropriate choice of the HRTF representation.



Chapter 3

Discrete Spherical Harmonic
Transform and Interpolation

Spherical harmonic basis functions are well-defined orthonormal continuous functions in space
which provide good interpolation characteristics. Every square integrable function defined over
the spherical angles can be decomposed into a series of spherical harmonic coefficients. Most
physical patterns known at many discrete positions fulfill this condition. Such a pattern can be
decomposed into a weighted sum of spherical harmonics and thus be converted into a spatially
continuous form. The discrete spherical harmonic transform (DSHT) has been widely used
for the representation and simulation of HRTFs, e.g. in [EAT98,GODZ10,ZDG09,NSMH03,
DZG04,NCNW10].

3.1 Basic Definition

The real-valued spherical harmonics can be defined as (see [Pom08])

Y m
n (β, α) =


√

(2n+1)
4π

(n−m)!
(n+m)!

Pm
n (cosα)

√
2− δm0 cos(mβ), if m ≥ 0

√
(2n+1)

4π
(n−m)!
(n+m)!

Pm
n (cosα)

√
2 sin(mβ), if m < 0

(3.1.1)

where the spherical harmonic order n = 0, 1, 2, ...,N − 1,N (N being the maximal order),
the spherical harmonic degree m = −n,−n + 1, ..., n − 1, n and Pm

n denotes the associated
Legendre functions consistent with those in [Pom08].

The definition of the angles β and α (see equation 2.2.1) is different from the commonly used
azimuth and elevation angles, e.g. in [Wil99]. By using the polar plane angle β and the lateral
angle α, the spherical harmonics are not defined as usual but rotated by 90̊ . This re-definition

19
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is not degrading the accuracy of the transform since representing continuous functions in terms
of order limited spherical harmonics is rotation invariant. As will be shown in chapter 3.2, this
definition corresponds to an alignment of the symmetry characteristics of HRTFs and the
spherical harmonics.

Figure 3.1.1 depicts the first 16 real-valued spherical harmonics. The order n is plotted
vertically, increasing from top to bottom, while the degree m is plotted horizontally, from −n
on the left to n on the right. For every order n, 2n + 1 spherical harmonics exist, adding up
to (N + 1)2.
Two observations can be made here concerning the shape, 1) the spatial complexity is directly
proportional to the order n and 2) all spherical harmonics of degree m = 0 are rotationally
symmetric to the y-axis.

Figure 3.1.1: Spherical harmonic basis functions up to order 3, rotated by 90̊ . x-axis: yellow, y-axis:
pink, z-axis: green; plot functions by courtesy of Hannes Pomberger [Pom08]

3.2 Symmetry Characteristics

Considering the unwrapped phase as a temporal measure and the human head as approximately
spherical, the phase distribution of HRTFs can be assumed to be approximately rotationally
symmetric with respect to the interaural axis, by definition the y-axis (see figure 3.2.1(b)).

Taking a closer look at the definition of the spherical harmonics in equation 3.1.1, we can find
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corresponding symmetry. If m = 0 the equation simplifies to

Y 0
n (β, α) =

√
(2n+ 1)

4π
Pn(cosα),

where the only dependency is Pn = P 0
n , the Legendre polynomial which represents the special

case where "no variation in the azimuthal direction" exists [Wil99]. The angle that is normally
defined as the azimuth represents the polar plane angle β here. All spherical harmonics Y 0

n of
arbitrary order n ∈ [0, 1, ...,N] and degree m = 0 can therefore be written as

Y 0
n (β, α) = Y 0

n (α),

since they depend solely on the lateral angle α. The spatial property resulting from that
is rotational symmetry with respect to the interaural axis (y-axis, see figure 3.2.1(a)). If
rotational symmetry can be assumed for the unwrapped phase, it should be representable
using only spherical harmonics of degree m = 0.

(a) Y 0
0:3 (b) Expected unwrapped phase distribution

Figure 3.2.1: Rotational symmetry of rotated spherical harmonics and assumed spatial phase distri-
bution of HRTFs
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3.3 Discrete Spherical Harmonic Transform

Similar to [Zot09], the mathematical nomenclature for the decomposition of a set of spatially
discrete values into spherical harmonics is defined as follows. For the sake of clarity, the
discrete angular positions given by polar plane angle β and lateral angle α are summarized and
expressed as θ. P denotes the number of known discrete positions.

Spherical harmonic expansion. Given a discrete spherical pattern g = [g(θ1), ..., g(θP)]T,
its spherical harmonic expansion gN = [gN(θ1), ..., gN(θP)]T, band-limited by n ≤ N, can be
written as

gN = YN γN, (3.3.1)

where

YN =


yN(θ1)

.

.

.

yN(θP)

 , yN(θ) = [Y 0
0 (θ), ..., Y N

N (θ)]

is a matrix containing the (N + 1)2 spherical harmonics, evaluated at the positions θ1, ..., θP

and
γN =

[
γ0

0 γ−1
1 γ0

1 γ1
1 ...... γN

N

]T

is a vector containing the corresponding spherical harmonic coefficients. As can be seen from
equation 3.3.1, the coefficient vector γN needs to be found in order to calculate the spatially
continuous spherical pattern gN from the spatially discrete pattern g.

Assuming that g = gN, equation 3.3.1 can be re-written as

g = YN γN

and the inversion writes as
γN = Y −1

N g, (3.3.2)

yielding the spherical harmonic coefficients.
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3.4 Reconstruction and Interpolation

The identification of the spherical harmonic coefficients γN allows the reconstruction of the
spherical pattern g. Depending on the complexity of g, the distribution of the sampling
positions θ, their number P and the maximal order N, the reconstruction

gN = YN γN (3.4.1)

might differ from the original pattern g (except for hyperinterpolation, see [Zot09]), which is
due to matrix inversion errors (see chapter 3.5).

Furthermore, interpolation of the discrete spherical pattern g can be achieved, taking advan-
tage of the spherical harmonics’ spatial continuity. Note that the vector γN does not depend
on the position variable θ. The spherical harmonic expansion can therefore be evaluated at
any arbitrary position θdes on the surface of the sphere

gN(θdes) = yN(θdes) γN, (3.4.2)

yielding the interpolated version of g at the desired position θdes.

3.5 Invertibility and Regularization

The matrix YN is typically not square, unless (N + 1)2 = P, thus in general an under- or
overdetermined system of equations needs to be solved. Further, YN might be ill-conditioned
depending on the regularity of the distribution of sampling positions θ and the maximal order
N. If, for example, the sampling positions are only defined on a partial sphere, as e.g. sampling
distributions with a polar gap, which are quite usual for HRTFs, some sort of regularization
has to be applied.

A very common method for matrix regularization is the singular-value decomposition (SVD)
[NZK11]

YN = U S V T,

decomposing YN into a diagonal matrix S = diag{s}, where s are the singular values, and
two orthogonal matrices U and V containing the left and right eigenvectors, respectively.
Keeping only the largest singular values, the size of S can be reduced and U and V truncated
accordingly. The regularized pseudoinverse can then be calculated using the truncated SVD

Y †N = Ṽ S̃−1 ŨT,
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where S̃, Ũ and Ṽ are the truncated versions of the original matrices.

If a well-distributed sampling grid can be assumed (i.e. no large areas without any sampling
positions), another way to calculate the pseudoinverse is a least-squares approach:
Based on the mean square error

J(γN) = ‖g − YN γN‖2,

the minimal error results from its first derivative

∂J(γN)

∂γN

= −2
[
Y T

N g − Y T
N YNγN

]
= 0,

yielding
Y T

N YNγN = Y T
N g =⇒ γN = [Y T

N YN]−1Y T
N g.

The resulting pseudoinverse Y †N = [Y T
N YN]−1Y T

N inverts the spherical harmonic expansion
from the left.
The least-squares error distribution depends on the distribution of the sampling positions.
Voronoi tesselation can be applied to derive proper weighting factors in order to minimize
the error due to the distribution of the sampling positions. Introducing a weight vector w
containing the weighting factors, the weighted pseudoinverse can be defined as

Y †N = [Y T
N diag{w}YN]−1Y T

N diag{w}.

Using the weighted pseudoinverse, equation 3.3.2 can now be modified to

γN = Y †N g, (3.5.1)

yielding the spherical harmonic coefficients.

3.6 Definition of Maximal Order for Spatial Sampling

Grids

The spatial sampling grid of the dummy head measurements used in the following chapters
is depicted in figure 3.6.1. It covers a full sphere with a total of 1014 points and the highest
density around the horizontal plane.
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Figure 3.6.1: Spatial sampling grid and reconstruction grid Θrec. Blue stars: Interpolation grid
Θint, red stars: Reference grid for Interpolation Θint,ref

Reconstruction Grid. In order to recompose HRTFs as described in equation 3.4.1, all
measured positions Θrec are used.
Taking the invertibility of the spherical harmonics matrix as a requirement, the maximal spher-
ical harmonic order Nrec can be defined according to a realistic condition number of YN as a
function of N . The maximal spherical harmonics order was set to Nrec = 18, resulting in a
condition number cond(YNrec) = 3.5 (see figure 3.6.2 ).
In order to calculate the spherical harmonic coefficients γNrec , a weighted pseudoinverse Y †Nrec

needs to be defined according to equation 3.5.1. Voronoi tesselation was applied to calculate
the weighting coefficients using a Matlab toolbox provided by IRCAM.

Interpolation grid. In order to interpolate the HRTFs as described in equation 3.4.2, only
each second position of Θrec is used for the decomposition: Θint (see figure 3.6.1). The
remaining positions Θint,ref are used as a reference for the interpolated filters. Again, the
maximal spherical harmonics order Nint was chosen after evaluating the condition number of
YN as a function of N . The maximal spherical harmonics order was set to Nint = 17, resulting
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in a condition number cond(YNint
) = 2.5 (see figure 3.6.3 ). The pseudoinverse was calculated

as described before.
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Figure 3.6.2: Reconstruction grid Θrec: Condition number of YN
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Figure 3.6.3: Interpolation grid Θint: Condition number of YN

3.7 Aliasing

In this section, the consequences of the sampling grid concerning aliasing are compared for
the common and the rotated version of the DSHT.

In [Zot09], an aliasing map has been used. Consider an ideal spherical harmonic representation
g = Y γ, without band limitation (N =∞), and its band-limited counterpart gN = YNγN with
N < ∞. Ideally, all higher-order harmonics n > N should be suppressed in the band-limited
case

gN = g,

YNγN = Y γ, (3.7.1)

⇒ γN = Y †NY γ,
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such that only the truncated coefficients γN remain, i.e. Y †NY = I. An error measure can
hence be introduced as

‖eγ‖2 = ‖
(
Y †NY − I

)
γ‖2. (3.7.2)

Note that the multiplication of the band-limited spherical harmonics matrix with its pseudoin-
verse yields the identity matrix, Y †NYN = I, provided that YN is well-conditioned. Errors
therefore only occur for orders above the band limitation, n > N.

In figure 3.7.1 the normalized aliasing errors for the reconstruction sampling grid Θrec are
depicted up to n = 30 for the commonly used DSHT and the rotated DSHT. The blue line
represents the band limitation by Nrec = 18. Depending on the orientation of the DSHT, very
different aliasing maps result. Given a spatial pattern g which excites higher-order harmonics,
these maps illustrate how much energy of a specific basis function will be mirrored into the
band-limited range.
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(b) Rotated spherical harmonic transform

Figure 3.7.1: Spatial aliasing map for Θrec [Zot09]

3.8 Reconstruction and Interpolation of Simulated

HRTFs

In this section, an initial practical investigation concerning the suitability of different HRTF
representations for the DSHT is performed. Furthermore, the significance of the rotated
spherical harmonics for a rotationally symmetric HRTF-model is analyzed.

Filter simulation. The filters were calculated using a spherical head model presented by
Duda et al. [DM98]. This model generates the transfer function between a distant sound
source and an observation point on a rigid sphere. The position is defined by the distance
between the center of the sphere and the sound source rsource, the sphere radius rhead and the
angle α between source and observation point, depicted in figure 3.8.1. The lateral angles
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α derived from the spatial sampling grid Θrec depicted in figure 3.6.1 were used, the sphere
radius was set to rhead = 8.5cm and the source distance to rsource = 1m. The observation
point hence corresponds to the left ear position.

Figure 3.8.1: Spherical head model

The Filters were calculated for 129 discrete frequencies ωl, regularly distributed between 0Hz

and 22.05kHz. This corresponds to a DFT-length L = 256 and a sampling rate fs = 44.1kHz.
The impulse responses were then calculated via the inverse discrete fourier transform of the
symmetrically complemented filter spectra. Since the filters do not depend on the polar plane
angle β, they are rotationally symmetric in relation to the interaural axis.

DSHT using reconstruction grid and interpolation grid. The spherical harmonic co-
efficients were calculated for the impulse responses h[θ, k], the magnitude responses |H[θ, ωl]|
and the unwrapped phase responses Φ[θ, ωl] using all positions Θrec

γNrec,h[k] = Y †Nrec
h[Θrec, k],

γNrec,|H|[ωl] = Y †Nrec
|H[Θrec, ωl]|, (3.8.1)

γNrec,Φ[ωl] = Y †Nrec
Φ[Θrec, ωl],

and using the subset of positions Θint

γNint,h[k] = Y †Nint
h[Θint, k],

γNint,|H|[ωl] = Y †Nint
|H[Θint, ωl]|, (3.8.2)

γNint,Φ[ωl] = Y †Nint
Φ[Θint, ωl].

Reconstruction and interpolation via Inverse DSHT. The reconstructed impulse re-
sponses hNrec [θ, k], magnitude responses |HNrec [θ, ωl]| and phase responses ΦNrec [θ, ωl] were
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calculated for all positions Θrec as in equation 3.4.1. The interpolated impulse responses
hNint

[θ, k], magnitude responses |HNint
[θ, ωl]| and phase responses ΦNint

[θ, ωl] were calcu-
lated for the interpolation reference positions Θint,ref as in equation 3.4.2. The reconstructed
magnitude and phase responses were then transformed to impulse responses via the in-
verse DFT of the complex spectra HNrec [θ, ωl] = |HNrec [θ, ωl]| ejΦrec[θ,ωl] and HNint

[θ, ωl] =

|HNint
[θ, ωl]| ejΦint[θ,ωl].

3.8.1 Reconstruction and Interpolation Quality

Impulse response envelope error. In order to evaluate the resulting impulse responses,
a simple error measure for the overall similarity of impulse responses is used. To avoid an
overestimation of the impulse responses’ fine structure, the envelopes of the reference impulse
response href and the manipulated impulse response h are compared. The envelope of a real
signal can be calculated using the absolute value of its Hilbert transform henv[k] = |H{h[k]}|
(figure 3.8.2). The impulse response envelope error is defined as

EIR(θ) =
1

K

K−1∑
k=0

| |H{href [θ, k]}| − |H{h[θ, k]}| |
max(|H{href [θ, k]}|)

.

Since this error measure is only used for comparison, it is depicted in dB with 0dB corresponding
to the maximal occurring value.
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Figure 3.8.2: Impulse response h and envelope henv

Mean errors and examples. In figure 3.8.3 the mean of the impulse response envelope
error EIR over all positions is depicted. It can be ascertained that the filter representation
using magnitude and unwrapped phase is much more adequate than the time domain repre-
sentation concerning the requirements of the DSHT. Unsurprisingly, the interpolation quality
is generally worse than the reconstruction quality.
The impulse responses corresponding to the worst-cases in terms of the error can be compared
in figure 3.8.4. Independent of the filter representation, the largest errors occur at contralateral
positions. When using the DSHT of the impulse responses, obvious ’pre-delays’ can be ob-
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served as artifacts. They apparently result from crossfading the peaks of all impulse responses.
The highest peaks can be found in impulse responses at ipsilateral positions, which have a
shorter onset delay than impulse responses at the extreme contralateral positions where the er-
ror is maximal. Using the DSHT of magnitude and unwrapped phase, even these contralateral
impulse responses can be reconstructed and interpolated quite accurately. The worst-case is a
widened peak which does not reach the full height while the temporal structure of the impulse
response remains virtually unchanged. Although one might argue that a low reconstruction
and interpolation accuracy for contralateral positions might not be perceptually relevant, the
’pre-delays’ might have disastrous effects on the localization cues, especially on the ITD.
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(b) Magnitude and unwrapped phase reconstruction
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(c) HRIR interpolation
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(d) Magnitude and unwrapped phase interpolation

Figure 3.8.4: Worst-case impulse responses
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Spatial error distribution. The spatial distribution of the impulse response envelope error
EIR, depicted in figure 3.8.5, is largely similar for reconstruction and interpolation. The
overall error level is much higher when using direct DSHT of the impulse responses, whereas
the separate DSHTs of magnitude and unwrapped phase seem to achieve much more accurate
results. The error tends to increase from the ipsilateral to the contralateral side of the sphere.
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(b) Magnitude and unwrapped phase reconstruction
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(c) HRIR interpolation
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(d) Magnitude and unwrapped phase interpolation

Figure 3.8.5: Spatial distribution of impulse response envelope error EIR

3.8.2 Most Important Basis Functions

Calculation of maximal coefficients. Since the spherical harmonic transform is applied
to each frequency bin or each sample separately, the calculation of the overall importance
of a specific coefficient over all frequencies or all samples requires some consideration. For
the coefficients derived from magnitude (γNrec,|H|[ωl] and γNint,|H|[ωl]) and unwrapped phase
(γNrec,Φ[ωl] and γNint,Φ[ωl]), the absolute values were normalized according to their maximum
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value per frequency bin and weighted with 1/f for frequencies greater than 500Hz to avoid an
overestimation of high-frequency components. For the coefficients derived from the impulse re-
sponses (γNrec,h[k] and γNint,h[k]), the coefficients were filtered according to the 1/f -weighting,
afterwards the absolute values were normalized according to their overall maximum per sample
and position, thus emphasizing the importance of high-amplitude components. The maxima
of the weighted coefficients over time/frequency are depicted in figure 3.8.6.
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Figure 3.8.6: Maximal weighted spherical harmonic coefficients in [dB], derived from HRIRs (left),
magnitude (middle) and unwrapped phase (right) for reconstruction grid Θrec (top) and interpolation
grid Θint (bottom).

Interpretation. The consequences of the rotation of the spherical harmonics described in
chapter 3.1 can be observed in figure 3.8.6. The simulated filters used here are rotationally
symmetric in relation to the interaural axis. Therefore the most important coefficients are
clearly those with degree m = 0, corresponding to the rotationally symmetric rotated spherical
harmonics (see chapter 3.2). The coefficients with m 6= 0 derived from magnitude and
unwrapped phase have much smaller values. Coefficients derived from the impulse responses
have their largest values for m = 0, while significant values for other degrees apparently exist.
The values of coefficients with m 6= 0 increase for the interpolation grid Θint, i.e. using less
sampling positions. Obviously, the fine structure of the impulse responses results in a higher
sensitivity to spatial aliasing (see chapter 3.7). The spatial sampling grid hence seems to be
insufficient for the DSHT of impulse responses while it seems to suffice for the DSHTs of
magnitude and unwrapped phase.



Chapter 4

Phase Unwrapping

4.1 Spatial Phase Distribution

Measured dummy head HRTFs. For all further investigations, a set of dummy head
HRTFs will be used which has been measured at the IRCAM. A HEAD acoustics HSU III
mannequin was used, which provides a relatively simple reproduction of the human head, torso
and ears.

Figure 4.1.1: HEAD acoustics HSU III

Unlike usual data sets, measured responses of a dummy can be determined over the whole
sphere without polar gap below. The sampling grid is described in chapter 3.6 and depicted
in figure 3.6.1. Note that this data set represents realistic HRTFs in terms of their spatial
complexity, as opposed to the spherical head model simulation used in chapter 3.8.

Spatial phase continuity. The application of DSHT to the HRTFs’ phase implicitly requires
a continuous phase distribution which is assumed to be defined by the unwrapped phase. This
can be based on the constraint that the spherical harmonic transform demands a "square
integrable function on a sphere" [Wil99], i.e. a spherical pattern without discontinuities. It is

33
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also obvious when considering a local approach for phase interpolation because the unwrapped
phase has to be consistent with the true group delay to produce a meaningful result (see chapter
2.3.2).
Note that the HRTFs are only available for a set of discrete sampling positions and hence
need to be sampled dense enough to provide correct interpolation. Spatial phase continuity
can only be granted if the unwrapped phase differences between adjacent sampling positions do
not exceed π. The directly accessible phase information contained in the measured responses
is the wrapped phase, a discontinuous function of frequency, which may be discontinuously
distributed for each discrete frequency ωl in space in case of spectral notches or corruption by
noise. The conversion from wrapped to unwrapped phase, which has so far been applied in a
spectral sense (as described in chapter 2.3.2), hence deserves some further notice.

Visual comparison. In order to clarify the spatial impacts of the spectral phase unwrapping,
the wrapped phase and spectrally unwrapped phase distributions in space are compared here
for specific discrete frequencies. The previously assumed rotationally symmetric properties of
the unwrapped phase distribution appear as vertical lines in the following plots, discontinuities
as sudden color changes.
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Figure 4.1.2: Top: wrapped phase in [ radπ ], bottom: spectrally unwrapped phase in [ radπ ] for fre-
quencies 170Hz, 350Hz and 500Hz, from left to right

The wrapped and unwrapped phase distributions for f = 170Hz are depicted in figure 4.1.2 on
the left. Considering the corresponding wavelength of λ ≈ 2m, the absolute phase differences
must be very small. All values of the unwrapped phase distribution lie inside the interval
] − π, π], indicating that no spectral unwrapping was necessary up to f = 170Hz. Still,



Phase Unwrapping 35

the change from −π to π indicates spatial discontinuity of the spectrally unwrapped phase
distribution for that frequency bin, displayed as a transition from white to black in the region
of α ≈ 90̊ . The unwrapped phase distributions for f = 350Hz and f = 500Hz (middle
and right in figure 4.1.2) also equal the corresponding wrapped phase distributions, which do
not show any spatial discontinuities. As for the assumption of rotational symmetry, it can be
found that while the assumption seems to hold in general, there are some deviations from it,
especially below the head due to the torso.

The wrapped phase distributions for f = 850Hz, f = 1kHz and f = 1.5kHz depicted
in figure 4.1.3 all show discontinuities. As opposed to the unwrapped phase distribution
for f = 170Hz, spectral phase unwrapping neutralizes those discontinuities by adding 2π-
multiples. Concerning the assumed symmetric properties of the unwrapped phase distribution,
it can be said that while a global rotational symmetry can be observed, the deviations from it
seem to increase with frequency, again with maximal deviations located below the head.
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Figure 4.1.3: Top: wrapped phase, bottom: unwrapped phase for frequencies 850Hz, 1kHz, 1.5kHz,
from left to right

For the relatively high frequencies depicted in figure 4.1.4, the wrapped phase distributions
become much more complex due to very small wavelengths. While the unwrapped phase
distribution for f = 3kHz seems to be largely spatially continuous, for f = 8kHz discontinuity
becomes obvious (α = 120̊ , β = −80̊ ). Taking a closer look at the colour scaling, even more
discontinuities can be identified, mainly on the contralateral side (α > 90̊ ). The unwrapped
phase distribution for f = 10kHz shows a whole area with discontinuities around its borders,
while the significant discontinuity observed for 8kHz remains, indicating a propagation of
the discontinuities over frequency. A slight rotational symmetry of the unwrapped phase
distribution can still be observed, but the patterns become more complex with increasing
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frequency. Due to shadowing effects for small wavelengths, the largest deviations can be
found in the region of the torso and generally on the contralateral side.
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Figure 4.1.4: Top: wrapped phase, bottom: unwrapped phase for frequencies 3kHz, 8kHz, 10kHz,
from left to right

Conclusions. Concluding this investigation, it can be said that spectral phase unwrapping
does not necessarily produce a continuous phase distribution in space. Since the aim is to
find a spatially continuous phase distribution for each discrete frequency bin, the spatial
relation between phase values of adjacent points in space should be the criterion for phase
unwrapping. Using spectral phase unwrapping, the spectral relation between phase values of
adjacent frequency bins is used as a criterion for unwrapping.

4.2 The Concept of Phase Unwrapping

Phase unwrapping in audio applications is usually performed spectrally, i.e. from lowest to
highest frequency bin. In scientific fields such as image processing and geodesy, the unwrapped
phase is defined in a spatial sense, applying the unwrapping procedure to adjacent points
in space. The basic unwrapping operation is usually defined as described in the following
[Mat06,Spa95] and can be applied spectrally or spatially.

Any complex number Z = a+ j · b can be expressed as

Z = |Z| ejφ with φ = arctan

(
b

a

)
, φ ∈ ]− π, π]

The phase angle or wrapped phase φ does not necessarily equal the absolute phase Φ, because
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its complex representation is 2π-periodic. The phase information is restricted to the interval
]− π, π], neglecting any additional 2π-multiples, which can be written as the phase wrapping
operation from equation 2.3.2

φ = W(Φ)

= mod2π(Φ + π)− π.

The recovery of the neglected 2π-multiples using sequences of complex numbers is called phase
unwrapping.
Considering a sequence Φ[m] of M adjacent absolute phase values, neighbouring in a spatial
or spectral sense, we can define the linear differences by

∆Φ[m] = Φ[m]− Φ[m− 1]. (4.2.1)

From equation 4.2.1 comes immediately

M∑
m=1

∆Φ[m] = Φ[M]− Φ[0], (4.2.2)

because the other values cancel out each other. Introducing the so-called Itoh-Condition

|∆Φ[m]| ≤ π, ∀m (4.2.3)

which can be understood as a sampling theorem, it can now be assumed

W(∆φ) = ∆Φ, (4.2.4)

since the wrapped differences between the adjacent wrapped phase values φ must also lie in
the interval ]− π, π]. With this relation, equation 4.2.2 can be re-written as

Φ[M] =
M∑
m=1

W(∆φ[m]) + Φ[0]. (4.2.5)

Each value of the absolute phase Φ can hence be calculated from the wrapped phase φ,
provided there is a starting value Φ[0].

This relation holds only if 1) the Itoh-Condition is fulfilled and 2) the available wrapped phase
values are ideal, i.e. φ =W(Φ). Due to corruption by noise and other errors, measured data
might not satisfy the second condition, while the compliance with the Itoh-Condition depends
on the spatial sampling or the frequency resolution, respectively. Since equation 4.2.5 can also
be written recursively as

Φ[M] =W(∆φ[M]) + Φ[M− 1], (4.2.6)
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possible unwrapping errors propagate along the path that the operation is applied to. When
spectral phase unwrapping is used, errors propagate over frequency. Once the spectrally
unwrapped phase distribution for a certain frequency bin is incorrect, the distributions for all
following bins will also be corrupted. The relevance of this effect depends mainly on the quality
of the HRTF-measurement and the post-processing applied for enhancement of the measured
data.

4.3 Spherical Phase Unwrapping

When spatial phase unwrapping is applied, errors propagate along the path in space that it
is applied to. In the so-called path-following image processing approaches, the choice of the
best paths is the essential problem. Although seemingly trivial in nature, phase unwrapping is
a very complex problem in 2-D or 3-D. The aim is to find the one ’true’ spatial pattern without
discontinuities, which is heavily data-dependent. In order to gain robustness against corrupted
data, a lot of methods have been published. They range from Branch Cut-algorithms, where
’bad’ regions are identified and path limits are set accordingly, to quality guided algorithms,
where the order of the unwrapping depends on the reliability of the available values [GZW88,
Mat06, CMM+02]. Other approaches are the minimum norm methods, which are based on
error minimization from a global perspective. All those approaches have one essential drawback
when it comes to spherical problems: They usually work on rectangular equidistant sampling
grids, i.e. planes in 2-D or cuboids in 3-D. The phase unwrapping problem considered in this
thesis, however, is spherically distributed.

4.3.1 Concept of Neighboring Points

In order to apply spatial unwrapping over a spherical sampling grid, the first step is to find
meaningful relations between the sampling points in terms of their spacing.

Cylindrical projection. The surface of a sphere can be depicted as a cylindrical projection
on a plane as in figure 4.3.1, a representation that seemingly facilitates the use of standard 2D
image processing phase unwrapping algorithms. This is misleading because two of the plane’s
edges (top and bottom in this case) border each other in fact. If spatial phase unwrapping
was applied to this plane, the spatial coherence between β = 180̊ and β = −180̊ would be
disregarded. Furthermore, the sampling grid is not equidistant, and the true distances between
the points are further distorted by the projection. In [CR99] Constantini and Rosen described
a method for phase unwrapping on a non-rectangular grid, based on the assumption that due
to noise only sparse data from a measurement on rectangular grid are available.
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Figure 4.3.1: Sampling points as cylindrical projection

In order to identify the adjacent points for each available point in the sparse data, they utilized
the concept of neighbouring points, which has been introduced by Boris Delaunay [Del34] in
1934.

Delaunay triangulation. The two-dimensional Delaunay triangulation finds the triangles of
a set of points such that none of those points lies inside the circumcircle of any triangle [Wik],
see figure 4.3.2. Each point is part of several triangles, the other vertices of those triangles are
its neighbours. The Delaunay triangulation can be extended to 3-D considering circumscribed
spheres around the triangles.
An algorithm that finds the Delaunay triangles on the convex hull of a set of points in 3-D
is described in [BDH96] and can be conveniently used as a Matlab-function (’convhulln’). In
figure 4.3.3, the Delaunay triangulation calculated via this quickhull algorithm for convex hulls
from Barber et al. is depicted along with an example reference point and its neighbours.
Now the spatial relations between the sampling points can be defined, resulting in a set of
neighbours for each sampling position.

Figure 4.3.2: Principle of 2-D Delaunay tri-
angulation [Wik]
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Figure 4.3.3: Delaunay triangulation of measure-
ment grid and exemplary neighbouring points
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4.3.2 Algorithm

Concept. As mentioned before, the reliability of phase unwrapping is heavily dependent on
the available data along the path of unwrapping. Since unwrapping errors propagate along
this path, it seems reasonable to unwrap ’good’ values first and ’bad’ values at last. This
concept is called quality guided phase unwrapping. For the calculation of meaningful quality
criteria several approaches can be found in literature [Mat06].
Since unwrapping errors can be mainly traced back to measurement values corrupted by noise,
the signal-to-noise-ratio (SNR) is probably the best criterion. The SNR obviously depends on
the level of the measured signals, hence a very simple quality measure is the energy distribution.
Considering a simplified model of the human head as a sphere, thus neglecting the influence of
the torso, the energy distribution of HRTFs can be assumed to decrease with the lateralisation
of the sound source from ipsilateral to contralateral side. In reality this assumption does not
perfectly hold because of shadowing effects produced by the torso (see figure 4.3.4). Still,
the spherical phase unwrapping algorithm presented here is based on the constraint, that the
phase shall be unwrapped from ipsilateral to contralateral side, taking advantage of a priori
knowledge about the data.

(a) Temporal envelopes in [dB] versus lateral angle (b) Energy distribution

Figure 4.3.4: Energy distribution of left ear HRIRs

Description of the algorithm. Before starting the algorithm, the starting point θ0 needs
to be defined. According to the concept of unwrapping from ipsilateral to contralateral side,
θ0 was defined as the point closest to the interaural axis on the ipsilateral side. Φ denotes un-
wrapped and φ wrapped phase values. θref denotes the current reference point, ΘNeighbours,ref

denotes the positions of the neighbours of θref . Θwrapped and Θunwrapped denote the positions
of wrapped and already unwrapped phase values, respectively. The indices of the lateral angles
α are used accordingly.
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θref
!

= θ0 set: first reference point

is starting point

Φ[θref ]
!

= φ(θref) set: Unwrapped phase of starting point is

wrapped phase of starting point

Mathematical / Logical Verbal

A1) Unwrap neighbours

∀ θ ∈ ΘNeighbours,ref ∩Θwrapped for all wrapped neighbours of reference point:

Φ[θ] = Φ(θref) +W(φ(θ)− φ(θref)) unwrap phase relative to reference point,

see equation 4.2.6

A2) Smooth result: Absolute phase must decrease

while mean of unwrapped values

Φ[θ] > mean{Φ[αref ≥ α > αref −∆α]} in the lateral region is smaller

than current unwrapping result:

=> Φ[θ] = Φ[θ]− 2π subtract 2π

B) Find new reference point

new reference point has
θrefnew ∈ Θunwrapped I. already been unwrapped

ΘNeighbours,refnew ∩Θwrapped 6= ∅ II. at least one wrapped neighbour

∀ θ ∈ ΘNeighbours,refnew ∩Θunwrapped III. no discontinuities to unwrapped

neighbours

|Φ[θrefnew ]− Φ[θ]| < π

|αrefnew − α0|
!

= min IV. minimal lateral difference to

starting point

C) Set new reference point, repeat

θref = θrefnew repeat algorithm with new reference point

Θwrapped = ∅ => stop untill all points are unwrapped
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The constraint in B) III. might not be fulfilled if the Itoh-Condition does not hold for higher
frequencies. B) III. and B) IV. can therefore be replaced by

∀ θ ∈ ΘNeighbours,refnew ∩Θunwrapped∑
|Φ[θrefnew ]− Φ[θ]| !

= min,

taking the position with the least discontinuities to its unwrapped neighbours. This has been
used for frequencies above 10kHz (see chapter 4.3.3).

Performance. The spherical phase unwrapping algorithm has been implemented as a Matlab-
function called ’SphericalUnwrap’. Since it finds the paths iteratively, it needs about 0.7P

iterations to fully unwrap a spherical phase distribution with P points. Using the 1014-point
sampling grid, the average calculation time for one iteration was ∼ 7ms. With around 700

iterations this adds up to ∼ 5s per frequency and hence ∼ 11 minutes for all 129 frequency
bins. The computation was carried out using an up-to-date personal computer with a 2.66
Ghz Intel Core i7 processor. Compared to spectral unwrapping using the ’unwrap’-function in
Matlab (∼ 80ms for all frequencies and positions), the algorithm is very expensive in terms
of computing time.

Progression. The progression of the spherical phase unwrapping algorithm for f = 7kHz is
depicted in figure 4.3.5.
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Figure 4.3.5: Progression of spherical phase unwrapping algorithm for f = 7kHz. Top, left to right:
Iterations 0, 100, 200, 300. Bottom, left to right: Iterations 400, 500, 600, 685
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4.3.3 Boundaries

According to the Itoh-Condition (see equation 4.2.3), the reliability of the spherical phase
unwrapping operation depends on the difference between spatially adjacent absolute phase
values. In other words, if the absolute difference between the true absolute phase values Φ of
neighbouring points exceeds π, the spacing of the sampling grid is too coarse for an unique
interpretation. This is a problem of spatial aliasing. Since the true absolute phase is not
available, the consistency of the absolute phase distribution and the sampling grid with the
Itoh-Condition is investigated using the linear phase. The linear phase can be assumed to
cover the major component of the absolute phase and can easily be calculated from the onset
delay as

Φlin(ωl) = −ωl τ.

The onset delay was derived from 1) the measurement data via onset extraction and 2) a
spherical onset delay simulation (see annex, chapters 8.2 and 8.3). In both cases, the recon-
struction sampling grid Θrec was used, i.e. all 1014 available points from the measurement.
The maximal angular difference between neighboring points in this data set is ∼ 11̊ .

Discontinuity measure. The absolute linear phase differences between each position and
its neighbours were calculated and discontinuities simply counted. The discontinuity measure
Edis(θ) was then calculated per position and frequency by dividing the number of discontinu-
ities by the respective number of neighbours:

Edis(θ) = 100 · ηdis(θ)

ηNeighbours(θ)
in [%], (4.3.1)

where ηdis(θ) denotes the number of absolute phase differences greater than π between θ and
its neighbours and ηNeighbours(θ) denotes the number of the neighbours of θ.

Discontinuity measure of simulated linear phase. Figure 4.3.6 depicts the spatial dis-
tribution of the discontinuity measure of the simulated linear phase for different frequencies.
Since the simulated linear phase distribution is not very complex and even rotationally symmet-
ric around the interaural axis, discontinuities appear only above 10kHz. Clearly, the simplicity
of the spherical model used for linear phase simulation provides an insufficient approximation
in this context (compare figure 4.3.7).
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Figure 4.3.6: Simulated linear phase: Discontinuity measure in [%] for f = 10kHz, f = 15kHz,
f = 20kHz, from left to right

Discontinuity measure of extracted linear phase. In figure 4.3.7, the spatial distribution
of the discontinuity measure of the extracted linear phase is depicted for different frequencies.
While for f = 3kHz the sampling grid seems to be sufficient for all positions except the
ones below the torso, the regions and quantities of the discontinuity measure increase with
frequency. The regions of discontinuity tend to be restricted to the lower hemisphere for
frequencies below 5kHz and enter the upper hemisphere for frequencies above 5kHz.
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Figure 4.3.7: Extracted linear phase: Discontinuity measure in [%] for f = 3kHz (top left), f =
5kHz (top right), f = 10kHz (bottom left) and f = 15kHz (bottom right)
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Mean discontinuity measure. The overall discontinuity measures depicted in figure 4.3.8
show their frequency dependence. While the simulated linear phase can be accurately sampled
and hence correctly unwrapped up to 10kHz, the sampling of the extracted linear phase starts
to increasingly fail around f = 3kHz, leading to a violation of the Itoh-Condition. Although
this value might be slightly distorted by onset delay extraction errors, the critical frequency
for spherical phase unwrapping can still be assumed as fItoh = 3kHz. Above that frequency,
the Itoh-Condition might be violated and spherical phase unwrapping might hence generate
discontinuities between neighbouring points. Note that this investigation is only valid for all
available positions Θrec. The subset Θint is assumed to have a lower critical frequency due to
larger angular distances between its neighbouring points.
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Figure 4.3.8: Extracted and simulated linear phase. Left: Mean discontinuity measure in [%] versus
frequency. Right: Number of positions with any discontinuities versus frequency



Chapter 5

Spectral vs. Spherical Phase
Unwrapping

5.1 Spatial Continuity

Mean discontinuity measure. In order to evaluate the spectral and spherical unwrapping
procedures, resulting in the spectrally unwrapped phase Φspectral and the spherically unwrapped
phase Φspherical, the discontinuity measure Edis was calculated for both unwrapped phase
distributions (see equation 4.3.1). The discontinuity measure seems to be significantly lower
when using the spherical unwrapping procedure (see figure 5.1.1). Since spherical unwrapping
errors propagate along the spatial path, the discontinuity measure can be quite different for
adjacent frequency bins. The spectral unwrapping procedure leads to a continuous increase
of the discontinuity measure with frequency due to error propagation over frequency. The
significant discontinuity measure value of the spectrally unwrapped phase for f = 200Hz is
caused by the discontinuity of the spectrally unwrapped phase distribution for f = 170Hz, see
chapter 4.1).
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Figure 5.1.1: Spectrally and spherically unwrapped phase. Left: Mean discontinuity measure in [%]
versus frequency. Right: Number of positions with any discontinuities versus frequency
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Spatial distribution of Φspectral, Φspherical and Edis. Comparing spectrally and spheri-
cally unwrapped phase distributions and the resulting discontinuity measures for selected fre-
quencies, the reasons for the apparent advantages of the spherical phase unwrapping algorithm
become clear. While the spatial distribution of the spectrally unwrapped phase Φspectral is dis-
continuous for f = 170Hz, the spherical phase unwrapping algorithm detects and eliminates
this problem (see figure 5.1.2). In figure 5.1.3, the distributions of Φspectral and Φspherical for
f = 5kHz are depicted along with the corresponding discontinuity measures. The unwrapping
methods produce a quite similar result for that frequency. With increasing frequency, depicted
in figures 5.1.4, 5.1.5, 5.1.6 and 5.1.7, the differences between Φspectral and Φspherical increase.
The distributions of Φspectral show large regions of discontinuity, starting at ipsilateral posi-
tions. The discontinuities tend to propagate over frequency once they appear. The spherical
phase unwrapping algorithm 1) forces the unwrapped phase distribution to a largely rotation-
ally symmetric pattern around the interaural axis, 2) tends to produce most discontinuities at
contralateral positions and 3) avoids error propagation over frequency.
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Figure 5.1.2: f = 170Hz. top: unwrapped phase, bottom: discontinuity measure Edis. left:
spectral phase unwrapping, right: spherical phase unwrapping.
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Figure 5.1.3: f = 5kHz. top: unwrapped phase, bottom: discontinuity measure Edis. left: spectral
phase unwrapping, right: spherical phase unwrapping.
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Figure 5.1.4: f = 8kHz. top: unwrapped phase, bottom: discontinuity measure Edis. left: spectral
phase unwrapping, right: spherical phase unwrapping.
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Figure 5.1.5: f = 10kHz. top: unwrapped phase, bottom: discontinuity measure Edis. left:
spectral phase unwrapping, right: spherical phase unwrapping.
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Figure 5.1.6: f = 15kHz. top: unwrapped phase, bottom: discontinuity measure Edis. left:
spectral phase unwrapping, right: spherical phase unwrapping.
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Figure 5.1.7: f = 20kHz. top: unwrapped phase, bottom: discontinuity measure Edis. left:
spectral phase unwrapping, right: spherical phase unwrapping.

Spatial range of unwrapped phase values and physical relevance. The range of the
unwrapped phase distributions for frequencies larger than 8kHz is very different: The range
of the spectrally unwrapped phase over all positions is approximately 15π for f = 10kHz,
23π for f = 15kHz and 30π for f = 30kHz, all of which correspond to a maximal distance
of 26cm. This is a quite realistic value, considering a head radius of rhead = 8.5cm and the
corresponding distance from one ear to the other on the sphere rhead π ≈ 27cm. The range
of the spherically unwrapped phase over all positions is much smaller, 13π for f = 10kHz,
13π for f = 15kHz and 16π for f = 30kHz which correspond to maximal distances of 22cm,
15cm and 14cm, respectively. The spherically unwrapped phase might hence not be physically
meaningful for very high frequencies, where the phase is severely undersampled. Since this is
basically a matter of ’inventing’ the unwrapped phase in a spatial sense, it might just as well
be adapted to some constraint, which is rotational symmetry and discontinuity reduction for
ipsilateral positions in this case. Additionally, the phase of frequencies above 8kHz is quite
irrelevant in terms of human perception.

Variance along the cone of confusion. In figure 5.1.8 the maximal variances along the
cone of confusion produced by both unwrapping procedures are depicted. Spherical phase
unwrapping effectively minimizes those variances globally, while the local maxima of the dis-
continuity measure depicted in figure 5.1.1 are clearly reflected as regions of relatively high
variance. Furthermore, the low-frequency variance from the spectrally unwrapped phase in the
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region of 90̊ < α < 130̊ is eliminated by spherical unwrapping.

Figure 5.1.8: Maximal variance along the cone of confusion. Left: Spectrally unwrapped phase,
right: Spherically unwrapped phase

5.2 Spherical Harmonic Transform Performance

In this section, the suitability of the spectral and spherical phase unwrapping procedures for
the DSHT is compared using the phase error measure Eφ.

Phase error definition. The phase error is a measure of the similarity between original
phase φref and manipulated phase φ. It is defined as

Eφ(θ) =
100

π

∑L−1
l=0 W(|φref [θ, l]− Φ[θ, l]|) ν[l]∑L−1

l=0 ν[l]
[%], (5.2.1)

with the frequency dependent weights

ν[l] =

 1
f [l]
, if f [l] > 1kHz

1, if f [l] ≤ 1kHz,

L denotes the number of the frequency bins l and W is the phase wrapping operator from
equation 2.3.2.

DSHT. The DSHT was calculated for the reconstruction grid Θrec and for the interpolation
grid Θint, depicted in figure 3.6.1. The DSHT was applied as described in chapter 3.8,
afterwards the phase error Eφ was calculated.
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Mean phase error. The mean phase error is depicted in figure 5.2.1. Obviously, the spher-
ically unwrapped phase is more suitable for the reconstruction than the spectrally unwrapped
phase. The mean phase errors produced by interpolation are similar for both unwrapping
methods. This is possibly due to a degraded performance of the spherical phase unwrapping
algorithm using the reduced interpolation grid Θint because of a violation of the Itoh-Condition
for comparatively low frequencies.
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Figure 5.2.1: Mean phase error

Phase error distribution. The distributions of the phase errors are depicted in figure 5.2.2.
In accordance with the distribution of spatial phase discontinuities (see chapter 5.1), the
phase errors resulting from reconstruction and interpolation of the spherically unwrapped phase
are relatively low for ipsilateral positions. Maximal errors occur in the region of the torso
and in extreme contralateral positions. The phase errors resulting from reconstruction and
interpolation of the spectrally unwrapped phase show the same tendency, while additional
significant errors in ipsilateral positions can be observed. This also corresponds to the more
or less random distribution of the spatial phase discontinuities produced by spectral phase
unwrapping.

Conclusions. The spherical phase unwrapping algorithm seems to provide a higher suit-
ability for the DSHT in general. Nevertheless, the results suggest that it is less robust to
undersampling of the phase distribution, i.e. violations of the Itoh-Condition. This is not
surprising, since spherical unwrapping progresses from one spatial position to another, while
spectral unwrapping progresses from one frequency bin to another. On the one hand, spectral
phase unwrapping does not account for spatial consistency, which can lead to unnecessary
spatial phase discontinuities in the appropriately sampled case. On the other hand, if the
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Itoh-Condition is violated, which is clearly the case for higher frequencies, spectral unwrapping
might be more robust. Still, the spatial consistency of spectral phase unwrapping is random
and can easily be corrupted by errors due to the measurement itself and post-measurement
processing.
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Figure 5.2.2: Phase error distribution



Chapter 6

Results

In this chapter, the performance of the DSHT using different kinds of HRTF representations
is evaluated. The evaluation is performed for reconstruction via the DSHT using the recon-
struction grid Θrec and for interpolation via the DSHT using the interpolation grid Θint. The
sampling grids are depicted in figure 3.6.1. The definitions of the maximal orders Nrec and Nint,
corresponding to the respective sampling grids, have been derived in chapter 3.6 according to
the invertibility of the resulting spherical harmonic matrices YNrec and YNint

.

The HRTF representations used for comparison are

I. HRIRs h[θ, k],
II. HRTF magnitude |H[θ, ωl]| and spectrally unwrapped phase Φspectral[θ, ωl],
III. HRTF magnitude |H[θ, ωl]| and spherically unwrapped phase Φspherical[θ, ωl].

The evaluation of HRTFs modified by spatial manipulation via the DSHT is psychoacoustically
motivated, the respective error measures are defined in the corresponding sections.

6.1 ITD Error

ITD error definition. The ITD is the localization cue that determines the lateral position
of a sound source perceived by listeners for frequencies below 1.3kHz [MM02]. The ITD error
is defined as

EITD(θ) = |ITDref(θ)− ITD(θ)| in [samples], (6.1.1)

where

ITDref(Θ) = τref,R(θ)− τref,L(θ),

ITD(θ) = τR(θ)− τL(θ).

54
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The onset delays τref,R and τref,L are extracted from the original left and right impulse responses
href,R and href,L and τR and τL from the manipulated left and right impulse responses hR and
hL (see annex, chapter 8.2 for onset delay extraction).

Mean ITD error. The mean of the ITD errors produced by reconstruction of the three
different HRTF representations shows a clear tendency. The reconstruction of HRIRs seems
to perform worst, with a mean error of 1.7[sampes] ≈ 38µs. This is due to the ’pre-delays’
resulting from the DSHT of temporally displaced impulse responses, which have already been
observed in chapter 3.8.1 and also account for the high maxima of almost 30[samples]. Re-
construction of |H| and Φspectral results in a mean error of 1.5[samples] ≈ 34µs, while re-
construction of |H| and Φspherical produces the lowest mean error of 1[sample] ≈ 23µs. The
difference between reconstruction of spectral and spherical unwrapping can be explained by
the low-frequency phase discontinuity produced by spectral phase unwrapping, which has been
eliminated using the spherical phase unwrapping algorithm (see figure 5.1.2).
Unsurprisingly, the mean ITD errors produced by interpolation are generally higher, while the
ranking remains the same. The difference between the spherical and spectral phase unwrapping
methods is smaller compared to reconstruction. This is due to the spherical phase unwrapping
algorithm’s lack of robustness against spatial undersampling observed in chapter 5.2.
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Figure 6.1.1: Mean ITD errors
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ITD error distribution. The most significant ITD errors produced by interpolation and
reconstruction of all three HRTF representation mainly occur in the lower hemisphere. Using
HRIRs, extreme lateral positions are particularly affected due to significant ’pre-delays’. The
spherically unwrapped phase clearly yields lower errors compared to the spectrally unwrapped
phase, especially in the upper hemisphere.
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(c) |H| & Φspectral reconstruction
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(d) |H| & Φspectral interpolation
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(e) |H| & Φspherical reconstruction
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Figure 6.1.2: ITD error distributions
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6.2 ILD Error

ILD error definition. The ILD (interaural level difference) is the localization cue that
determines the lateral position of a sound source perceived by listeners for frequencies above
1.3kHz [MM02]. The ILD can be defined as

ILD(θ, b) = 20 log(|HR[θ, b]|)− 20 log(|HL[θ, b]|),

where the bark bands b are defined as

b = 13 arctan(0.00076f) + 3.5 arctan

(
f 2

75002

)
.

The ILD error is calculated as the mean of the absolute difference between original ILDref

and manipulated ILD

EILD(θ) =
1

B

B∑
b=1

|ILDref(θ, b)− ILD(θ, b)| in [dB], (6.2.1)

where B denotes the number of the discrete bark bands b.

Mean ILD error. Figure 6.2.1 indicates that the direct reconstruction and interpolation
of the magnitude responses |H[θ, ωl]| is significantly superior to indirect reconstruction and
interpolation using the HRIRs in terms of the ILD error. The errors produced by interpolation
are higher than the errors produced by reconstruction, which is due to the physical complexity
of the true magnitude distribution.
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ILD error distribution. The distributions of the ILD error show a similar tendency: Maximal
errors generally occur at extreme lateral positions and below the head, in the region of the
torso. The mean errors depicted in figure 6.2.1 are reflected as the overall error level in
the distributions. The errors for interpolation are higher than for reconstruction. The direct
reconstruction and interpolation of the magnitude leads to lower ILD errors than its time-
domain counterpart, the reconstruction and interpolation of HRIRs.

α  in [°]

β
  

in
 [

°
]

 

 

0 90 180

−90

0

90

180

[dB]
0

1

2

3

4

5

(a) HRIR reconstruction

α  in [°]

β
  

in
 [

°
]

 

 

0 90 180

−90

0

90

180

[dB]
0

1

2

3

4

5

(b) HRIR interpolation

α  in [°]

β
  

in
 [

°
]

 

 

0 90 180

−90

0

90

180

[dB]
0

1

2

3

4

5

(c) |H| reconstruction

α  in [°]

β
  

in
 [

°
]

 

 

0 90 180

−90

0

90

180

[dB]
0

1

2

3

4

5

(d) |H| interpolation

Figure 6.2.2: ILD error distributions
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6.3 Magnitude Error

Magnitude error definition. The magnitude error used in this thesis was introduced by
Minnaar et al. based on the results of a psychoacoustical experiment [MPC05]. It is defined
as

E|H|(θ) =
1

p

llog,p∑
l=llog,1

|E|H|,R[θ, l] + E|H|,L[θ, l]| in [dB], (6.3.1)

where llog,1, ..., llog,p are p frequency bins, logarithmically distributed between 100Hz and
20kHz, and

E|H|,L[θ, l] = |20 log(|Href,L[θ, l]|)− 20 log(|HL[θ, l]|)|,

E|H|,R[θ, l] = |20 log(|Href,R[θ, l]|)− 20 log(|HR[θ, l]|)|.

|Href,R| and |Href,R| denote the original left and right magnitude spectra, |HR| and |HL| the
manipulated left and right magnitude spectra.
Minnaar et al. found that the just-noticeable difference (JND) in terms of this error measure
is 1dB. In other words, if E|H|(θ) ≤ 1dB, listeners could not detect the difference between
|HR| and |HL| and the original magnitude spectra |Href,R| and |Href,L|.

Mean magnitude error. The values of the magnitude error depicted in figure 6.3.2 nat-
urally correspond to the ILD error, which also depends on the spectral magnitude. In the
reconstruction case, the direct DSHT of the magnitude produces a mean error below the JND
of 1dB, while the DSHT of HRIRs leads to a mean error of almost 2dB. The mean errors
produced by interpolation of both HRTF representations increase compared to reconstruction,
while the ratio between DSHT of magnitude and DSHT of HRIRs is similar.
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Magnitude error distribution. The distributions of the magnitude errors largely corre-
spond to the distributions of the ILD errors, which are depicted in figure 6.2.2. Maximal errors
generally occur at extreme lateral positions, in the region of the torso and in the horizontal
plane. The reconstruction of HRIRs produces additional high errors around the median plane.
Since ILD and ITD do not provide meaningful localization information in the median plane,
this can lead to significant problems concerning the detection of sound source positions.
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Figure 6.3.2: Magnitude error distributions
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6.4 Most Important Basis Functions

In this section, the importance of the respective spherical harmonics for HRIRs, magnitude |H|,
spectrally unwrapped phase Φspectral, and spherically unwrapped phase Φspherical is investigated.
Assuming a similar behaviour for left and right HRTFs due to the symmetric shape of the
dummy head used for the HRTF measurements, only the left ear HRTFs are investigated here.

Nomenclature. The spherical harmonic coefficients were calculated for the HRIRs h[θ, k],
the magnitude responses |H[θ, ωl]|, the spectrally unwrapped phase responses Φspectral[θ, ωl]

and the spherically unwrapped phase responses Φspherical[θ, ωl] using all positions Θrec

γNrec,h[k] = Y †Nrec
h[Θrec, k],

γNrec,|H|[ωl] = Y †Nrec
|H[Θrec, ωl]|,

γNrec,Φspectral
[ωl] = Y †Nrec

Φspectral[Θrec, ωl],

γNrec,Φspherical
[ωl] = Y †Nrec

Φspherical[Θrec, ωl],

and using the subset of positions Θint

γNint,h[k] = Y †Nint
h[Θint, k],

γNint,|H|[ωl] = Y †Nint
|H[Θint, ωl]|,

γNint,Φspectral
[ωl] = Y †Nint

Φspectral[Θint, ωl],

γNint,Φspherical
[ωl] = Y †Nint

Φspherical[Θint, ωl].

Calculation of maximal coefficients. Since the DSHT is applied to each frequency bin
or each sample separately, the calculation of the overall importance of a specific coefficient
over all frequencies or all samples requires some consideration. For the coefficients derived
from the magnitude, the spectrally and spherically unwrapped phase, the absolute values were
normalized according to their maximum value per frequency bin and weighted with 1/f for
frequencies greater than 500Hz to avoid an overestimation of high-frequency components. For
the coefficients derived from the HRIRs, the coefficients were filtered according to the 1/f -
weighting; afterwards, the absolute values were normalized according to their overall maximum
per sample and position, thus emphasizing the importance of high-amplitude components. The
maxima of the weighted coefficients over time or frequency are depicted in the following.

Rotated spherical harmonics. Note that the DSHT is applied using the polar plane angle
β and the lateral angle α. The basis functions are hence rotated by 90̊ in comparison to the
commonly used DSHT with azimuth and elevation angles. For a more detailed description of
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this modification of the DSHT, the interested reader is referred to chapter 3.

DSHT of HRIRs. The maximal spherical harmonic coefficients derived from the HRIRs
indicate a rather high importance of almost all available basis functions. This reflects the high
spatial complexity of the impulse responses. Due to the rotation of the basis functions, the
highest coefficient values occur for m = 0. This is due to the almost rotationally symmetric
distribution of the impulse responses’ energy in relation to the interaural axis.
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Figure 6.4.1: Maximal weighted coefficients derived from DSHT of HRIRs

DSHT of magnitude responses. The maximal spherical harmonic coefficients derived
from the HRTFs’ magnitude |H| show very low significance for higher-order basis functions.
Consequently, the maximal order could possibly be set to N = 5 without a significant loss of
reconstruction and interpolation accuracy.
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Figure 6.4.2: Maximal weighted coefficients derived from DSHT of magnitude responses
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DSHT of spectrally unwrapped phase responses. The maximal coefficients derived
from the HRTFs’ spectrally unwrapped phase responses reflect a rather high spatial complexity
of the unwrapped phase distribution. While the highest density of most important basis
functions can be found for low orders n and degrees m, coefficients for higher orders and
degrees are not negligible, especially when using the coarser interpolation sampling grid.
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Figure 6.4.3: Maximal weighted coefficients derived from DSHT of spectrally unwrapped phase
responses

DSHT of spherically unwrapped phase responses. As opposed to the most important
basis functions derived from the spectrally unwrapped phase, the maximal coefficients depicted
in figure 6.4.4 show very low significance for higher-order basis functions. This reflects a
lower spatial complexity of the spherically unwrapped phase distribution compared to the
spectrally unwrapped phase distribution. Most significant coefficient values occur for Y 0

0 , which
represents the constant component, and for Y 0

1 , which represents the simplest rotationally
symmetric pattern with respect to the interaural axis.
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Figure 6.4.4: Maximal weighted coefficients derived from DSHT of spherically unwrapped phase
responses
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Since the basis of both unwrapping methods is the same wrapped phase φ, the spherical phase
unwrapping algorithm can be assumed to effectively minimize the spatial complexity of the
phase distribution. This confirms the results of the investigation of spherical and spectral phase
unwrapping methods in chapter 5. The spherically unwrapped phase consequently allows for
a significant reduction of the maximal order to N = 5.



Chapter 7

Conclusion

7.1 Summary of the results

In this thesis, the suitability of different HRTF representations for the discrete spherical har-
monic transform has been investigated, particularly concerning interpolation quality. Contrary
to the commonly used minimum phase and delay approximation of HRTFs, the original un-
modified HRTFs have been used. It has been found that a separate interpolation of HRTFs
represented by their spectral magnitude and unwrapped phase responses is in principle superior
to an interpolation of their temporally unaligned time domain representations (HRIRs). Since
the phase responses are only available as discontinuous functions, wrapped to the interval
] − π, π], phase unwrapping had to be applied in order to reconstruct the absolute phase.
Phase unwrapping is a very delicate task and has therefore been further investigated. It has
been found that spectral phase unwrapping, which is typically used in audio applications, does
not necessarily provide meaningful results concerning the required spatial phase continuity. An
alternative method has been developed, which unwraps the phase in a spatial sense on the
sphere, based on geometric relations between the discrete sampling positions. Results suggest
that the spherical phase unwrapping algorithm presented in this thesis effectively minimizes
phase discontinuities on the sphere. Additionally, the application of spherical phase unwrap-
ping significantly simplifies the discrete spherical harmonic spectrum. An investigation of the
spherical harmonics’ relevance suggests that a set of HRTFs measured on a 1014-point spatial
sampling grid could be reducible to 36 spherical harmonic coefficients without significant loss
of accuracy using the proposed method.
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7.2 Interpretation and Outlook

Application of spherical phase unwrapping for coarse spatial sampling grids. While
the representation of HRTFs as their magnitude and spherically unwrapped phase responses
allows for very accurate interpolation in principle, the quality of spherical phase unwrapping is
heavily dependent on the relation between spatial resolution and frequency. The true absolute
phase must not change more than π between neighbouring points in space to guarantee accu-
rate phase unwrapping. Using typically applied spatial sampling grids for HRTF measurements,
this condition is violated for smaller wavelengths, i.e. higher frequencies. As the measurement
duration is usually very long, which furthermore leads to problems with the fixation of human
subjects, a reduction of the measurement grid is desirable. Unfortunately, a reduced spatial
resolution leads to a decrease of the critical frequency for accurate spherical phase unwrapping.

Two approaches to solving this conflict shall be mentioned here:

1. To determine the position of a sound source, the human auditory system resolves interaural
time differences (i.e. phase differences) only for low frequencies. Above 1.3kHz [MM02], the
phase can therefore be replaced by an excess phase and minimum phase approximation without
loss of localization accuracy. A perceptually motivated approach can hence be realized by using
the spherical phase unwrapping algorithm only for low frequencies, where the spatial resolution
can be assumed to be sufficient even if it is coarse. Phase values for higher frequencies can
be replaced by a) the interpolated onset delay, yielding the excess phase, and b) the minimum
phase response calculated from the interpolated magnitude response.

2. It has been observed that the spherical phase unwrapping algorithm fails to produce phys-
ically meaningful results if the phase is spatially undersampled. Phase-aliasing suppression is
already implemented in the algorithm, forcing the phase to globally decrease from the ipsi-
lateral to the contralateral side. Nevertheless, it might be beneficial to extend the algorithm
using a physically motivated estimation of the absolute phase, e.g. via onset delay simulation
by means of a geometric model. This approach might merge the advantages of spherical and
spectral phase unwrapping, taking the spatial and the spectral consistency of the phase into
account.

Considerations on spatial sampling strategies. During the work on this thesis, many
different sets of HRTFs have been investigated. One of them has been simulated using
a magnetic resonance imaging (MRI) scanned BEM modeling grid of a Neumann head, as
documented in [GK07]. The boundary element simulation was conducted at LIMSI/CNRS,
Orsay, using an implementation by courtesy of Makoto Otani, see [OISI10]. The sampling grid
was defined using a 6̊ equidistant angular spacing of lateral angles and polar plane angles,
depicted in figure 7.2.1. Results suggested that this type of sampling grid provides some
advantages, however, these advantages cannot be traced back to the sampling approach alone
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because a dummy head without torso was simulated and measurement noise is naturally not
present in simulated HRTFs.
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Figure 7.2.1: Sampling grid used for BEM simulation

An initial motivation for this thesis was the assumption of an almost rotationally symmetric
HRTF phase response with respect to the interaural axis. Considering the propagation-time
dependency of the phase, it is obvious that phase variations occur mainly in lateral directions,
as opposed to polar plane directions. An example of the absolute discrete phase gradients of
the simulated Neumann head HRTFs is depicted in figure 7.2.2(b). The colours of the lines
specify the amount of phase variation along the respective paths. Clearly, the phase variation
is very low within sagittal planes and much higher for lateral changes.
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Figure 7.2.2: Absolute discrete gradients for f = 4kHz, view from above the head

Phase and magnitude are naturally measured for the same positions. The magnitude responses
must show variations in sagittal planes due to the well-known pinna cues required for cone
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of confusion disambiguation. The absolute discrete gradients of the corresponding magnitude
distribution are depicted in figure 7.2.2(a). Although the magnitude distribution in sagittal
planes is clearly more complicated than the phase distribution, its variations also seem to be
higher for lateral changes.

(a) View from the left (b) View from above

Figure 7.2.3: Proposed sampling scheme

A sampling scheme using high density in lateral direction and lower density in polar plane
direction, as depicted in figure 7.2.3, might hence be beneficial. A standard HRTF database
that uses a comparable spatial sampling approach is the KEMAR database. Furthermore,
this sampling scheme is well-adapted to the requirements of the spherical phase unwrapping
algorithm and might also facilitate a further reduction of the required spherical harmonics by
spherical harmonic band limitation with regard to the degree m. A further optimization of the
sampling scheme can be achieved based on the approach to finding optimized sampling grids
introduced in [Köß11]. It uses a given dense discrete grid and iteratively determines a subset
of points with low condition number for optimal DSHT.

Polar gaps. The HRTF data used in this thesis are measured or simulated on a full-sphere
sampling grid, which allows for convenient matrix inversion using the DSHT. Since HRTFs
are typically measured on a partial sphere with a polar gap in the region below the head,
the method presented in this thesis is not directly applicable to standard HRTFs. In order
to avoid regularization problems and thus an increase of necessary spherical harmonics, it is
suggested to mirror filters from positions in the upper hemisphere to the polar gap region in
the lower hemisphere. This might even enforce the rotational symmetry of magnitude and
phase responses in space, since the influence of the torso is partly neglected.

http://sound.media.mit.edu/resources/KEMAR.html
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Psychoacoustic verfication of results. The analysis of the results has so far only been
performed analytically using psychoacoustic error measures. In order to verify the analytic re-
sults, a psychoacoustic experiment is necessary. This should ideally include a detailed investi-
gation of the minimal sampling grid density required for an accurate interpolation of magnitude
and spherically unwrapped phase responses via the DSHT. The considerations about sampling
strategies and possible adaptations of spherical phase unwrapping for coarse sampling grids
might also be rewarding questions to evaluate on a psychoacoustic basis.
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Chapter 8

Annex

8.1 Minimum Phase Calculation

Phase response. Minimum phase systems have their poles and zeros inside the unit circle
and are therefore stable and causal and have causal and stable inverses. Every symmetric mag-
nitude spectrum of a real-valued impulse response |H[ωl]| = |DFT{h[k]}| has a unique corre-
sponding minimum phase impulse response hmin, and hence a unique corresponding minimum
phase response φmin. The minimum phase response and magnitude spectrum are connected
via the Hilbert transform H [Bus06]

φmin[ωl] = ={H{− ln(|H[ωl]|)}},

where = denotes the imaginary part.
Another approach uses the real cepstrum hrceps[k] = IDFT{ln(|H[ωl]|)}, where the anticausal
part needs to be flipped around time zero so it adds to the causal part [SI07]

hrceps,causal[k] =

 hrceps[k] + hrceps[−k] for 0 < k ≤ K
2
,

hrceps[k] for k = 0, K
2

+ 1.

The minimum phase is then given by

φmin[ωl] = ∠ eDFT{hrceps,causal[k]}.

Impulse response. The related minimum phase impulse response hmin[k] can either simply
be calculated using |H[ωl]| and φmin[ωl]

hmin[k] = IDFT{|H[ωl]| ejφmin[ωl]},
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or directly from the causal real cepstrum hrceps,causal[k]

hmin[k] = IDFT{eDFT{hrceps,causal[k]}}.

8.2 Onset Delay Extraction

There is a variety of approaches for the calculation of the temporal onset delay. In the context
of HRIRs, it is quite usual to use the difference between the right and left onset delays, i.e. the
ITD [BNK05,MPO+00,KW92]. In this thesis, the absolute delays contained in the right and
left HRIRs are calculated. An accurate and widely applied method for ITD detection is the
maximum IACC, where the maximum of the interaural cross-correlation function is calculated

ITD = argmax IDFT{Hr[ωl] ·Hl[ωl]
∗}.

Hr[ωl] and Hl[ωl] denote the complex spectra of the right and left HRIRs, respectively. This
approach can easily be adapted for the estimation of the absolute delay τ , using the spectra
of an impulse reponse (H[ωl]) and its minimum phase version Hmin[ωl] for calculating the
cross-correlation

τ [samples] = argmax IDFT{H[ωl] ·Hmin[ωl]
∗},

τ [s] = argmax IDFT{H[ωl] ·Hmin[ωl]
∗}/fs,

where fs denotes the sampling rate. Since the minimum phase version of the impulse response
always has its peak at the first sample, the onset delay τ results from the cross-correlation.

8.3 Onset Delay Simulation

In the field of binaural synthesis, a variety of mathematical models have been proposed for the
simulation of the ITD [Khu77, LJ99, SHLV99,AAD01]. In order to simulate the onset delay,
a spherical head model is used. The following derivations are performed in 2D, i.e. using a
circle instead of a sphere. Nevertheless, the mathematical relations hold for the spherical case
as well.
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First case: Direct path. Considering a model as depicted in figure 8.3.1, with the head
radius r , the measurement radius R, the position of the ear E, and the measurement position
P, the length S of the acoustic path between the measurement position and the ear can
directly be calculated as

S = ‖
→
E −

→
P‖,

provided that the angle ψ ≥ 90̊ , which leads to the constraint for the direct path:

r2 + S2 ≤ R2.

P

E

r S

R

Figure 8.3.1: Spherical model: direct path

Second case: Bent path. If ψ ≤ 90̊ , the ear position is placed at the averted side

of the sphere, so the path needs to be split into two parts (see figure 8.3.2). The constraint
for the bent path is

r2 + D2 > R2

The first part S1 represents the direct connection between the measurement position P and
the tangent point T. It can be calculated using the Pythagorean theorem:

S1 =
√
R2 − r2.

P

E S1

R

.

TS2

r

D

Figure 8.3.2: Spherical model: bent path
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The second part S2 is given by
S2 = r β,

where

β = α− γ = arccos

→E ◦ →P
r R

− arccos
( r
R

)
.

The total length of the acoustic path writes as

S = S1 + S2.

Calculation of delay. The onset delay τ can now be calculated from the length of the
acoustic path S

τ =
S[m]

C[m/s]
in [s],

τ =
S[m]

C[m/s]
fs in [samples],

where C and fs denote the sound velocity and the sampling rate, respectively.
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