
Phase Unwrapping on the Sphere for Directivity Functions and HRTFs

Johannes Zaar1, Franz Zotter1, Markus Noisternig2
1 University of Music and Performing Arts, Leonhardstr. 15, A-8010 Graz, Email: johanneszaar@gmx.de, zotter@iem.at
2 UMR STMS IRCAM-CNRS-UPMC, 1 place Igor-Stravinsky, 75004 Paris, France, Email: markus.noisternig@ircam.fr

Introduction
Applications using HRTFs or other directivity functions
are often combined with interpolation techniques because
measurements are only available at discrete directions
with finite angular spacing. Linear interpolation, how-
ever, creates interference at high frequencies where the
phase differences between the measurements are large
due to time-delays. For HRTFs, interference is typically
minimized by removing the all-pass components and sep-
arately interpolating the minimum-phase parts and the
time-shifts (linear phase). To preserve the all-pass com-
ponents, more general strategies linearly interpolate mag-
nitude and unwrapped phase separately in the frequency
domain. The unwrapped phase is related to the inte-
grated group delay; thus interpolation is performed on
group delay and magnitude separately, which seems suit-
able for HRTFs. However, spectral phase unwrapping is
often degraded by error propagation along the frequency
axis when applied to real measurements.

We present an alternative solution based on spatial phase
unwrapping for each frequency, i.e. unwrapping of the
phase across the spherical grid of directional measure-
ment data.

Absolute phase and principal argument
Any frequency response regarded at the frequency ω and
direction θ can be decomposed into magnitude and phase
H (ω,θ) = |H (ω,θ)|eiΦ(ω,θ). The frequency response is
invariant under addition of integer multiples of 2π to its
phase and therefore one usually only regards the principal
argument of the phase in the interval ]−π, π]. It is related
to the absolute phase by the principal argument function
W: φ(ω,θ) = W(Φ(ω,θ)) = mod2π(Φ(ω,θ) + π) − π.
The principal argument is wrapped into this interval
and is therefore discontinuous over both the frequency
and the measurement direction. By contrast, the abso-
lute phase is related to the group delay by τ(ω,θ) =
− ∂
∂ωΦ(ω,θ) and must be continuous over both ω and θ

in a physical sense. Reasonable interpolation therefore
requires phase unwrapping, i.e. the retrieval of the abso-
lute phase. In practice, this is done using the available
discrete frequencies ωk and discrete directions θl.

Phase unwrapping over frequency
Phase unwrapping/continuation over the frequency is de-
fined as

Φ̂(ωk,θl) =W{∆kφ(ωk,θl)}+ Φ̂(ωk−1,θl), (1)

with ∆kφ(ωk,θl) = φ(ωk,θl) − φ(ωk−1,θl).
Eq. (1) removes discontinuities, i.e. phase differ-
ences |∆kφ(ωk,θl)| > π, between adjacent frequencies

by adding integer multiples of 2π.
This is the usual approach for absolute phase recovery
in audio applications which enforces spectral phase
continuity. Due to the recurrence relation in eq. (1),
possible unwrapping errors accumulate along the fre-
quency axis. This yields severely corrupted results
if the low-frequency phase is noisy or inconsistent
due to post-processing artifacts. Between neighboring
directions, the unwrapping error causes discontinuities
that appear to be random.

Phase unwrapping on the sphere
Phase continuation over the measured directions can be
defined as

Φ̂(ωk,θl′) =W{∆lφ(ωk,θl′)}+ Φ̂(ωk,θl), (2)

with ∆lφ(ωk,θl′) = φ(ωk,θl′) − φ(ωk,θl). Unlike be-
fore, here the path of unwrapping needs to be defined.
First, indices of all neighboring positions θl′ of θl are
revealed using Delaunay triangulation [2], which can be
efficiently calculated using the Quickhull algorithm [1].
The relation given in eq. (2) removes discontinuity, i.e.
phase differences |∆lφ(ωk,θl′)| > π, between neighbor-
ing positions in space by adding integer multiples of 2π.
This is only valid if the unknown absolute phase does not
change by more than π between neighboring positions.
A priori information is used to develop a spatial unwrap-
ping path. The choice of the unwrapping path strongly
influences the quality of the result as errors accumulate
along this path. Therefore, it should run through reliable
positions first and end at potentially corrupted ones. As
a criterion for the reliability we used the SNR. Consid-
ering the spatial energy distribution of HRTFs, the SNR
is approximately rotationally symmetric with respect to
the interaural axis, decreasing from the ipsilateral to the
contralateral side. Further, the group delay is known
to increase in the same direction due to the increasing
lengths of the acoustic paths, i.e. the absolute phase de-
creases. This additional a priori information is used to
stabilize the results of the following algorithm.

Algorithm.

The spherical phase unwrapping algorithm for HRTFs is
described as follows (see also [3]):
A) Set first reference position. Choose the position clos-
est to the interaural axis on the ipsilateral side.
B) Unwrap neighbors. Unwrap phase change between the
reference position θl and its neighbors θl′ according to
eq. (2).
C) Smooth results. If the unwrapped phase does not de-
crease with increasing lateralisation, subtract 2π until it



does.
D) Set next reference position. Constraints: Position has
(i) already been unwrapped, (ii) at least one remaining
wrapped neighbor, (iii) the least phase discontinuities to
already unwrapped neighbors, and (iv) the smallest pos-
sible lateral difference to first reference position.
Repeat B, C and D until all positions have been un-
wrapped.
This algorithm iteratively unwraps the phase from the ip-
silateral to the contralateral side due to the choice of the
starting position in A) and the constraint D(iv) for the
choice of the next reference position (see fig. 1). It also
uses the a priori absolute phase information in C) to force
the unwrapped phase to globally decrease with increasing
length of the acoustic path. Furthermore, the algorithm
investigates the reliability of possible candidates in D(iii)
before choosing the next reference position.

Results
Spherical and spectral phase unwrapping were applied to
a set of dummy head (HEAD acoustics HSU III) HRTFs
on a full-sphere grid with 1014 positions (left-ear filter
set) measured in the anechoic chamber at IRCAM. The
spherical coordinates used for appropriate depiction are
the lateral angle α (from 0◦ on the interaural axis, ip-
silateral side, to 180◦ on the interaural axis, contralat-
eral side) and the polar plane angle β (from 0◦/front via
the upper hemisphere in positive direction to 180◦/back
and via the lower hemisphere in negative direction to
−180◦/back). In order to evaluate the performance of
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Figure 1: Progression of the spherical phase unwrapping algo-
rithm for 7kHz. Results after iterations 100, 400 and 685 (left to
right).

the proposed algorithm, a phase discontinuity measure is
introduced. It is calculated by counting the absolute un-
wrapped phase differences greater than π between each
position and its neighbors and dividing the result by the
number of neighbors. The result is then multiplied by
100 and hence delivers the amount of phase discontinu-
ity for each position in percent.
In comparison to spectral phase unwrapping, fig. 2 shows
a globally reduced number of discontinuities for spheri-
cal phase unwrapping and its tendency to shift them to
the contralateral side. Fig. 3 depicts the frequency de-
pendence of the phase discontinuity measure. Obviously,
spherical phase unwrapping eliminates the low-frequency
discontinuities contained in the spectrally unwrapped
phase. The discontinuity measure increases with fre-
quency for both unwrapping approaches, but is less steep
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Figure 2: Spatial distribution of the phase discontinuity measure
produced by spectral (left) and spherical phase unwrapping (right)
- mean over frequency (0− 22.05kHz).
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Figure 3: Spectral distribution of the phase discontinuity measure
- mean over positions.

for the spherical approach. This is because the phase
is spatially undersampled for small wavelengths and the
spherical algorithm enforces aliasing of the true absolute
phase to a contour which is continuous on the discretiza-
tion grid.

Conclusion and Outlook
In this contribution we proposed to apply phase unwrap-
ping on the sphere to improve phase interpolation of
HRTFs. The algorithm enforces spatial phase continu-
ity based on a roughly rotationally symmetric phase dis-
tribution of HRTFs with respect to the interaural axis,
which decreases towards the contralateral side. It is easy
to adapt for directivity functions of any kind that usually
provide similar a priori knowledge.
As the approach is based on a spatial phase sampling
constraint, it might fail for high frequencies due to spa-
tial undersampling of the phase. This can be avoided
using a physical model for an estimation of the absolute
phase that facilitates phase aliasing suppression, e.g. [4].
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