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distributions of the different peak classes overlap, 
and the optimal determination of the decision 
boundaries depends on the specific application.

The peak classification method proposed in 
Zivanovic, Röbel, and Rodet (2004) uses descriptors 
that were designed to adequately characterize non- 
stationary sinusoidal signals. These descriptors 
have proven to lead to better classification perfor-
mance than other approaches devoted to sinudoidal 
detection / estimation (Thompson 1982; Rodet 
1997). It was also shown in Zivanovic, Röbel, and 
Rodet (2004) that the peak classes can be character-
ized by distributions in the descriptor domains, 
similar to probability density functions. Once the 
distributions have been generated, a simple decision 
tree can be derived that allows the classification of 
spectral peaks into sinusoids, noise, and sidelobes.

The peak classification method has been used 
successfully in a number of applications. As ex-
amples we mention polyphonic fundamental- 
frequency detection (Yeh, Röbel, and Rodet 2005), 
adaptive noise-floor determination (Yeh and Röbel 
2006), and voiced / unvoiced frequency boundary 
determination. Another interesting application lies 
in the pre-selection of the sinusoidal peaks to reduce 
the number of candidate peaks considered for partial 
tracking in additive analysis. A reliable classification 
of noise peaks could reduce the number of incorrect 
connections, and, for probabilistic approaches like 
that described by Depalle, Garcia, and Rodet (1993), 
it would considerably reduce the computational cost.

The major problem with the classification scheme 
of Zivanovic, Röbel, and Rodet (2004) is the control 
of the classification boundaries (classification 
thresholds) that generally need adaptation for the 
specific problem at hand. Another problem is that 
the descriptor boundaries of the different classes 
will depend on the analysis window that is used. Up 

The decomposition of audio spectra into sinusoids, 
transients, and noise can serve as a useful tool for 
improving the results of parameter estimation or 
signal manipulation applications. As has been shown 
for the case of transient detection (Röbel 2003) and 
sinusoidal and noise discrimination (Zivanovic, 
Röbel, and Rodet 2004), the classification of spectral 
peaks is a beneficial step toward the identification 
of these signal components. Such a classification 
scheme that makes optimal use of the information 
provided by spectral peaks can then be used to 
achieve a robust segmentation into higher-level 
signal components, for example, partials or unvoiced 
regions. Unlike the perceptual audio segmentation 
(Painter and Spanias 2005), which attempts to 
maximize the matching between the auditory 
excitation pattern associated with the original 
signal and the corresponding auditory excitation 
pattern associated with the modeled signal, we base 
our classification purely on signal characteristics.

The basis for spectral peak classification is an 
adequate choice of criteria that would best describe 
sinusoidal and noise spectral peaks of audio signals. 
Ideally, those criteria (from now on, descriptors) 
would be able to precisely detect the nature of each 
peak in the spectrum and thus provide a complete 
separation between the corresponding peak classes 
in the descriptor domains. Consequently, the deci-
sion boundary for the classification process would 
be unambiguous, and no misclassfication of spectral 
peaks would occur. This scenario, however, is 
purely hypothetical as the peaks corresponding to 
sinusoids (partials) in the spectra of real-world sig-
nals are usually subject to additive noise and some 
type of modulation. In these cases, the descriptor 
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density between two neighboring minima in the 
discrete Fourier transform (DFT) modulus |X(k)| of 
the signal x(n), multiplied by the analysis window. 
The spectral peak descriptors proposed in Zi-
vanovic, Röbel, and Rodet (2004) are the normalized 
bandwidth descriptor, the normalized duration 
descriptor, and the frequency coherence descriptor. 
The first two are well suited to distinguish between 
sinusoidal and noise peaks, and the third can be 
used to detect the side-lobe structure that is an 
artifact of the windowing process.

Normalized Bandwidth Descriptor (NBD)

Energy distribution along the frequency grid pro-
vides useful information for identifying the nature 
of the signal related to a given spectral peak. Taking 
X(k) as the DFT of the windowed signal and L as the 
number of samples in the spectral peak, we define 
the NBD as a function of mean frequency k̄ (in bins) 
and a root-mean-square bandwidth BWrms:
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These sums are performed over the L bins in the 
peak under consideration.

Normalized Duration Descriptor (NDD)

As with mean frequency and bandwidth, the mean 
time and root-mean-square duration give a rough 
idea of the distribution of the signal related to a 
spectral peak along the time grid. The time duration 
for continuous signals is defined in Cohen (1995) as 
the standard deviation of the time with respect to 
the mean time. For discrete signals, the following 
expressions characterize the duration Trms and mean 
time n̄, respectively:

	
  
Trms = n – n( )2

x(n)
2

n∑ 	 (3)

to now, no high-level control parameter existed that 
would allow a user to adjust the sensitivity of the 
algorithm in an intuitive manner. There are two 
signal parameters that directly affect the classifica-
tion boundaries. The first is the maximum modula-
tion depth and period of the sinusoids. The second 
is the minimum amplitude of the sinusoids above 
the noise floor. Both parameters influence the 
boundaries of the sinusoidal class, and accordingly, 
both can be used to control the decision boundaries. 
The problem using the modulation limits as a 
control parameter is the fact that the modulation is 
not a single parameter, but rather a parameter 
vector of at least four dimensions (i.e., period and 
depth for both amplitude and frequency modula-
tion). Therefore, it cannot be used to provide an 
intuitive control of the classification boundaries. 
On the other hand, the sinusoidal peak amplitude 
above the noise floor is a single parameter that for a 
given modulation limit would allow us to control 
the complex decision thresholds rather intuitively.

Accordingly, in this article we investigate the 
relation between the peak amplitude above the noise 
floor and the descriptor boundaries for the class of 
sinusoidal peaks. The descriptors are defined and 
their properties discussed thoroughly in Zivanovic, 
Röbel, and Rodet (2004), but for the sake of clarity, 
we give a brief description of the most prominent 
characteristics in the next section. For the sinusoi-
dal model described in the subsequent section, we 
define the space of sinusoidal components by 
selecting particular limits of the amplitude and 
frequency modulation rate and depths, as well as the 
modulation laws. Then, we present the descriptor 
distributions for the different signal classes, and we 
establish the mathematical model for the descriptor 
limits of the sinusoidal class as a function of the 
peak amplitude level above the noise floor. Finally, 
we show that the threshold model successfully 
adapts to the limits of the distributions of sinusoi-
dal peaks for different types of analysis windows.

Spectral Peak Descriptors: A Summary

We define a spectral peak, the elementary classifica-
tion object, as the normalized energy spectral 
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As with the NBD, all the summations are per-
formed over all bins in the spectral peak.

Frequency Coherence Descriptor (FCD)

The frequency-reassignment operator for constant- 
amplitude chirp signals points exactly onto the 
frequency trajectory of the chirp at the position of 
the center of gravity of the windowed signal. The 
frequency offset ∆ω between the frequency at the 
center of a DFT bin and the reassigned frequency in 
radians is given by

	

   

∆

(k) = imag

Xdt(k)X *(k)

X(k)
2 	 (9)

where Xdt(k) is the DFT of the signal windowed by 
the time derivative of the analysis window. The 
frequency coherence descriptor is defined as a mini-
mum absolute frequency offset ∆ω(k) for all the bins 
belonging to that peak:

	
   
FCD = N

2
min
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∆
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where N is the number of bins in the DFT. The 
normalization factor in Equation 10 ensures that 
the descriptor is expressed in terms of DFT bins.

Sinusoidal Model and Peak Distributions

To classify a sinusoidal component, we must define 
what we consider to belong to the sinusoidal class. 
As is common for sinusoidal modeling, we repre-
sent a sinusoidal component as a sinusoid with 
slowly varying amplitude and frequency parameters 
(McAulay and Quatieri 1986; Serra and Smith 1990). 
For an investigation into the properties of the 
spectral-peak classes, this requirement is not suffi-
cient. To completely define the space of sinusoidal 
components, we must select concrete limits of the 
amplitude and frequency-modulation rate and 
depths, and we must specify a concrete form of the 
modulation laws.

For the present application, there exists an obvi-
ous constraint for the modulation that is related to 

	
  
n = n x(n)

2

n∑ 	 (4)

where |x(n)|2 is the normalized signal energy. It is 
also shown in Cohen (1995) that, from the duality of 
the Fourier transform, both mean time and duration 
can be expressed in terms of the spectrum. This 
important feature permits us to describe individual 
spectral peaks through the parameters generally 
employed in the time domain. Considering M to be 
the size of the analysis window, for discrete spectra 
the NDD can be obtained as
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where gd(k) is the group delay, and A'(k) is the fre-
quency derivative of the continuous magnitude 
spectrum. The group delay gd(k) is defined to be the 
derivative of the phase spectrum with respect to 
frequency. For a single bin of the DFT spectrum, it 
equals the mean time (according to Cohen 1995) 
and specifies the contribution of this frequency to 
the center of gravity of the signal related to the 
spectral peak. This property of the group delay is 
also used in Auger and Flandrin (1995) to derive the 
time reassignment operator, which together with 
the frequency reassignment attempts to improve 
signal localization in the time-frequency plane. 
According to Auger and Flandrin (1995), the group 
delay can be calculated efficiently as

	

  

gd(k) = –real
Xt(k)X *(k)

X(k)
2 	 (7)

where Xt(k) is the DFT of the signal using a time-
weighted analysis window. It can also be shown 
that A'(k) is the imaginary counterpart of the group 
delay in Equation 7:

	

  

gd(k) = –imag
Xt(k)X *(k)

X(k)
2 	 (8)
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where r(n) is additive Gaussian noise. According to 
the previous discussion, we set FAM = 2FFM. The 
frequency vibrato rate FFM must be selected such 
that the spectrum always contains a significant 
main lobe, which is ensured by FFM = 1 / (4.2M). 
Accordingly, the window covers less than one-
fourth of the FM vibrato period. The values for the 
amplitude and frequency modulation depth have 
been chosen as AAM = 0.5 and AFM = 10.

These values ensure a dominant-peak main lobe 
for arbitrary phase angles (α and β). The window 
length M, the sinusoidal frequency Fo, and the 
sample rate R do not impact the results. The size 
of the DFT N is chosen to assure that the “picket-
fence” effect has minimal impact on a peak rep
resentation in the discrete spectrum. For 
completeness, we note the values that we used for 
the following investigation into the descriptor 
distributions: M = 40 msec, N = 4,096, Fo = 880 Hz, 
and R = 44,000 samples / sec).

It is clear that the present worst-case signal does 
not cover all modulations that may be encountered 
in a real-world setting, even if we respect the fact 
that a dominant main lobe is required to detect a 
modulated sinusoid. The explicit inclusion of time- 
varying sinusoids into the model will nevertheless 
lead to a classifier that has significant advantages in 
real-world situations involving time-varying 
sinusoids.

Because the part of the sinusoidal peak that can 
be observed changes with the variance σr

2 of the 
background noise level r(n) the peak descriptors 
will not only change with the modulation, but also 
with the signal-to-noise (SNR) ratio. For multi- 
component signals, the global SNR does not provide 
meaningful insight, and therefore, we use the peak 
signal-to-noise ratio (SNRp) as our noise-level 
parameter. The SNRp indicates the sinusoidal peak 
power level in dB over the noise floor (see Figure 1) 
and it presents a convenient parameter to control 
the limits of the sinusoidal class.

To experimentally create the descriptor distribu-
tions, we proceed as follows. For the noise class 
distributions, we calculate the descriptors for all 
spectral peaks in the DFT of white Gaussian noise 
processes using an analysis window of size M. For 
the sinusoidal class, we create a grid of phase values 

the fact that the spectrum of the sinusoidal compo-
nent must contain a dominant main lobe. Other-
wise, the investigation of an individual spectral 
peak cannot provide us with sufficient information 
about the underlying sinusoid. Accordingly, the 
modulation rate and depth should be limited such 
that a dominant main lobe is present in the Fourier 
spectrum of each sinusoidal component. Because 
frequency and time resolution are related to the 
window size and shape, the modulation limits 
depend on these two variables. A simple solution to 
ensure the modulation constraint for all window 
sizes is to determine the maximum modulation 
that respects the constraint for a given window size 
and to change the worst-case modulation rate pro-
portionally with the window size.

As the next step, we must define the worst-case 
signal, which will be used to derive the descriptor 
limits of the sinusoidal class. From the wide range 
of possible modulation laws, we have chosen the 
sinusoidal amplitude and frequency modulation in 
white Gaussian background noise as our worst- 
case reference signal. The choice is motivated by 
the fact that a range of FM and AM conditions can 
be covered. If the window size is small compared 
to the vibrato rate, for example, it is easy to see 
that the vibrato signal approximately creates 
linear FM and AM. Recent investigations (Arro
abarren, Rodet, and Carlosena 2006; Verfaille, 
Guastavino, and Depalle 2005) have shown that, for 
real-world vibrato signals, the AM and FM will 
generally not be phase-synchronous. Accordingly, 
the worst-case signal model exhibits arbitrary phase 
relations between the amplitude and frequency 
modulation. Because part of the AM is induced by 
the FM and the resonator filter of the sound source, 
the dominant AM rate may either be the same as 
the FM rate or twice as high. As the latter case is 
more critical, we chose it for our worst-case signal 
scenario.

In view of the aforementioned discussion, the 
following mathematical expression for the sinusoi-
dal model is proposed:

	
   
x(n) = cos 2F0n + AFM sin 2FFMn + ( )  × 1+ AAM cos 2FAMn +( )  + r n( )	

	
   
x(n) = cos 2F0n + AFM sin 2FFMn + ( )  × 1+ AAM cos 2FAMn +( )  + r n( ) 	 (11)
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covering all combinations α and β over the range –π 
to π, and we set σr

2 = 0. Then, we calculate the 
descriptor values for the largest peak in each frame. 
This gives us the distributions for an infinite SNRp. 
The side-lobe distributions are calculated from all 
but the strongest spectral peak in the spectrum of 
the worst-case sinusoid. The resulting descriptor 
distributions are normalized by the maximum value 
and shown in Figure 2 for the Hanning window.

As we can see from Figure 2, the NBD distribu-
tions for modulated noise-free sinusoidal peaks and 
for noise peaks do not overlap at all, making them a 
very good candidate for sinusoidal and noise separa-
tion. The sine and noise distributions for the NDD 
significantly overlap, but the sinusoidal distribution 
covers only a small range of descriptor values. This 
fact will be used to refine the sine / noise separation 
done by the NBD for signals of finite SNRp, as ex-
plained in the next section. Both descriptors do not 
allow one to distinguish the side lobes from real 
signal components. For this task, the FCD descrip-
tor is extremely efficient. Note that in Figure 2, the 
maximum of the side-lobe distribution is to be 
interpreted as a cumulus of all the side-lobe FCD 
values distributed out of the current axis range.

Classification Strategy

The peak-classification algorithm, based on the 
proposed peak descriptors, is established through a 

Figure 1. Illustration of the 
parameter SNRp (peak 
signal-to-noise ratio).

Figure 2. Normalized 
distributions (bandwidth 
[NBD], duration [NDD], 
and frequency coherence 
[FCD]) for three peak 

classes (sine, noise, and 
side-lobe) in the descriptor 
domain, with σr

2 = 0 and 
using a Hanning window.
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sinusoidal distributions every time the minimum 
SNRp that is selected by the user is changed. As 
shown subsequently, however, the experimental 
evaluation of the distribution limits can be avoided 
thanks to a simple approximate formula that 
expresses the relationship between the parameter 
SNRp and the margins of the sinusoidal peak distri-
butions in the descriptor domain. These can be used 
to adapt the classifier to the selected SNRp. The 
thresholds to be adapted are the right margin of the 
NBD sinusoidal distribution and both margins of 
the NDD sinusoidal distribution. As for the FCD, 
the threshold can be held fixed thanks to the good 
side-lobe separation from the rest of the peak classes.

Modeling SNR
p
 Dependency

The relation between the classification threshold 
and the SNRp is rather complex, and to be able to 
achieve a model of these relations, the problem 
requires a number of simplifications. We first 
experimentally determine the signal pattern that is 
related to the descriptor limits for infinite SNRp. 
Then, we develop a simplified model of the effect of 
the additive noise to be able to achieve a mathemat-
ical formulation of the threshold dependency on the 
SNRp. The relation does not take into account the 
fact that the signal pattern at the descriptor limits 
may depend on the SNRp.

NBD Threshold

Recall that the NBD is the ratio of the peak band-
width to the peak width. As described above, we 
must first determine the sinusoidal signal that will 
give rise to the maximum value of the descriptor 
NBDmax = BW / L. This can be done by means of a 
straightforward search over the two-dimensional 
grid of phase values α and β for a given analysis 
window. (See Table 2 for a listing of some promi-
nent analysis windows.)

The presence of noise will affect both BW and L. 
It is clear that L will decrease, because the peak 
local minima approach the peak maximum in terms 
of magnitude. In a simple approximation, we can 

two-level decision tree as follows. In the first level, 
the side-lobe and non-side-lobe classification is 
performed. In the second level, the peaks previously 
declared as non-side-lobes are classified as sinusoids 
and noise. The thresholds for both levels of classifi-
cation are obtained by analyzing the distributions 
shown in Figure 2. For infinite SNRp, the classifica-
tion could be obtained by simply using FCD and 
NBD thresholds to perfectly separate all three peak 
classes. Note that only in this particular case, the 
NBD attains almost perfect sine / non-sine classifica-
tion; therefore the contribution of the NDD is 
negligible. The classification scheme that is used 
for infinite SNRp is shown in Table 1.

For a finite SNRp, the sinusoidal distributions 
experience a spread proportional to the noise level 
in the worst-case signal. In particular, the NBD 
sinusoidal distribution extends towards the right, 
whereas the NDD sinusoidal distribution spreads in 
both directions. The sinusoidal NBD distribution 
overlaps partially with the noise NBD distribution, 
which means that the NBD can no longer perfectly 
separate the peak classes. To reduce this ambiguity, 
we use the NDD. As mentioned previously, the 
sinusoidal NDD distribution covers only a small 
range of descriptor values. Hence, by considering only 
the peaks within the limits of the sinusoidal NDD 
distribution as sinusoids, we can eliminate some of 
the noise peaks previously classified as sinusoids 
and thus refine the initial sine / noise classification.

It is important to understand that a decreasing 
SNRp will modify the limits of the sinusoidal 
distribution in a manner similar to that of an 
increase in the modulation parameters. Therefore, 
the minimum SNRp can be used to control the 
decision thresholds in a rather intuitive manner.

To keep track of the limit values of the sinusoidal 
distributions, we would need to regenerate all the 

Table 1. Peak Classification Thresholds for Infinite 
SNRp Computed Using a Hanning Window

Peak Classes	 Descriptor Values

side-lobe / non-side-lobe	 FCD ≥ N / M

sine / noise	 NBD ≤ 0.13 and  
	 0.13 ≤ NDD ≤ 0.16
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because all values of β in the range –π ≤ β ≤ 0 result 
in a variation of the NDD of less than 1%), we use 
the signal pattern with AM envelope maximum in 
the window center for the following discussion.

Accordingly the approximate signal patterns for 
the shortest and longest signal in terms of the NDD 
are given by

	
   
xd min = x n; = −0.5( )w n( ) 	

	
   
xd max = x n; = 0.5( )w n( ) 	 (13)

where w(n) is the analysis window. The envelopes 
of the signal patterns xdmin and xdmax for the Hanning 
window are displayed in Figure 3. For finite SNRp, 
the patterns in Equation 13 are superposed to a 

assume that BW will stay roughly constant, because 
the peak shape around the maximum is only slightly 
affected by additive noise. Accordingly, we can as-
sume that the NBDmax is a function of L solely, which 
in turn depends on the SNRp. Practically, for the 
given αmax and βmax, we calculate the spectrum of the 
sinusoidal signal only once and store it in memory. 
Then, the NBD threshold can easily be calculated by 
taking into account only the DFT bins of the main 
lobe that lie above the noise floor given by SNRp. 
The validity of this simple approximation is checked 
in the next section of this article by comparing its 
values to those obtained by measuring NBDmax for 
different SNRp and different analysis windows.

NDD Threshold

The sinusoidal model in Equation 11 is herein 
simplified to investigate NDD thresholds. More 
specifically, the FM case can be disregarded because 
it does not modify the NDD of a sinusoid. Hence,

   
x (n) = cos 2F0n( ) × 1+ AAM cos 2FAMn + ( )  + r n( ) 	 (12)

The phase β that gives rise to the minimum and 
maximum values of the NDD descriptor for the 
signal in Equation 12 and after applying the analysis 
window can be calculated numerically. The solution 
shows that the maximum value is obtained when 
the minimum of the AM envelope is located in the 
signal center. The minimum of the NDD is obtained 
for a phase β that places the AM envelope maximum 
close to the window center. Owing to the interac-
tions between the analysis window and the enve-
lope, the AM envelope is not exactly aligned with 
the window center. To simplify the discussion (and 

Table 2. Phase Values of the Sinusoidal Model 
Corresponding to NBDmax for Various Analysis 
Windows

Window	 αmax	 βmax

Hanning	 0.75π	 0.50π
Blackman	 0.75π	 0.55π
Hamming	 0.70π	 0.45π

Figure 3. Envelopes of 
signal patterns and noise 
patterns corresponding to 
the NDD thresholds for 
SNRp = 10 dB. Sign sym-

bols mark the carrier phase 
relationship between the 
waveform; a Hanning 
window is used.
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ent because the bandwidth of the peaks related to 
NDDmin and NDDmax are different. They have been 
selected such that they obey a simple relation to the 
window size. Note that the exact frequency values 
are not critical for the model and that the frequen-
cies do not depend on the SNRp.

The modulation indices mmin and mmax must be 
greater than unity to ensure the phase change of π in 
the crossover between contiguous modulation 
lobes. Both amplitude A and modulation indices are 
a function of the SNRp. A determines the total 
energy of each pattern, and mmin and mmax control 
the distribution of that energy along the analysis 
window. The amplitude is simply a scaling factor 
that ensures the most of the spectral energy of the 
noise patterns lies SNRp dB under the main lobe of 
the worst-case signal. The values for the modula-
tion indices are more difficult to estimate, as they 
change in a non-linear fashion with the SNRp. To 
obtain a mathematical model, we used the signal in 
Equation 13 and a wide range of SNRp settings and 
have experimentally determined the maximum and 
minimum NDD as well as the values for mmin and 
mmax that would best match the experimental data.

Finally, we derived a second-order polynomial 
representation of the modulation indices by means 
of adapting a second-order polynomial to the set of 
modulation indices. For various types of analysis 
windows, the resulting functions are given by

	
  
mmin = aiSNRp

i  
i

∑ , mmax = biSNRp
i

i
∑ 	

with the corresponding coefficients given in Table 
3. For the Hanning window, the envelopes of the 
corresponding noise patterns for SNRp = 10dB are 
shown in Figure 3, and the envelopes of the result-
ing waveforms after the superposition are shown in 
Figure 4.

Note that the energy distributions of the signal 

narrow-band Gaussian noise. Owing to the small 
bandwidth of the signal peak, the effective noise 
bandwidth is rather small. For each SNRp, there 
exist two noise signal patterns, rdmin and rdmax, that 
will maximally increase and decrease, respectively, 
the NDDmax and NDDmin values. We use a simple 
signal model consisting of an amplitude-modulated 
carrier as basis for our noise model. The noise 
model is band-limited (reflecting the bandwidth of 
the spectral peak) but not necessarily time-limited. 
Owing to the small bandwidth, the noise pattern 
may extend out of the signal window. Because we 
do not want to take into account the length of the 
DFT for the simple model here, we limit the noise 
signal to the time segment of the analysis window.

To reduce NDDmin, rdmin should narrow the width 
of the central maximum of xdmin. To achieve this, 
rdmin must be in phase with xdmin around the win-
dow’s center and in counter-phase otherwise. 
Because a strong amplitude at the window boundar-
ies would always enlarge the NDD, we additionally 
assume that the noise pattern rdmin has the analysis 
window applied.

On the contrary, rdmax must be in counter-phase 
with xdmax around the window’s center and in phase 
close to the window edges. The resulting waveform 
would have the energy more uniformly distributed 
along the analysis window and thus larger NDDmax. 
Here, rdmax must not be tapered in order to contrib-
ute significantly to the energy concentration in xdmax 
around the window edges.

According to this discussion, we used the following 
model for the narrow-band Gaussian noise patterns:

   

rd min(n) = Acos(2Fon) 1+ mmin cos(4n / M) w(n)

rd max(n) = –Acos(2Fon) 1– mmax cos(2n / M)  	 (14)

The noise patterns are therefore sine-modulated 
waveforms. The modulation frequencies are differ-

Table 3. Coefficient Values for Modeling the mmin and mmax Dependency on SNRp

Window	 ao (rdmin)	 a1 (rdmin)	 a2 (rdmin)	 bo (rdmax)	 b1 (rdmax)	 b2 (rdmax)

Hanning	 0.0174	 –0.5770	 10.6280	 –0.0006	 0.1211	 0.8279
Blackman	 0.0081	 –0.3903	 9.0630	 –0.0022	 0.1472	 0.7083
Hamming	 0.0003	 –0.2816	 2.4716	 –0.0037	 0.1615	 0.7230
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types of analysis windows and for a wide range of 
SNRp values, the decision thresholds NBDmax, 
NDDmin, and NDDmax were generated from the 
corresponding models and compared to their respec-
tive measured values. The measured values are 
obtained from the Gaussian noise added to the 
sinusoidal model in the proportion established by 
the SNRp. The approximation errors are calculated 
as a difference between the measured and modeled 
values and are shown in Figure 5. Generally, the 
approximation errors are larger for smaller values 
of SNRp.

In the case of the NBDmax and the NDDmin thresh-
olds, the experimentally obtained errors show a 
systematic trend, which could be used to refine the 
model. For the NDD thresholds, the error generally 
lies in overestimating the change of the boundaries 
that corresponds to the SNRp. For the NBD thresh-
old, the threshold change is underestimated. The 
overall approximation error is obtained by evaluat-
ing the correlation coefficient R between the 
measured and approximated curve for each thresh-
old and various analysis windows. From Table 4, 
we can see that in almost all situations, the correla-
tion coefficient is above 0.95, which can be consid-
ered a very good approximation. Also, note that the 
largest approximation errors are found in the 
NBDmax-thresholding domain when using the 
Hanning window. On the contrary, the Blackman 
window thresholding adapts well to the correspond-
ing curve of measured threshold values.

Conclusions

In this article, we presented a new adaptive 
threshold-selection algorithm that can be used for 
classification of spectral peaks. By means of the set 
of peak descriptors from previous work and a 
herein-proposed compact sinusoidal model related 
to the analysis window, the limit values for the 
distributions of sinusoidal peaks in the descriptor 
domain can be explicitly obtained. Next, the 
variations of those limit values, owing to the 
presence of noise in the sinusoidal model, are 
characterized in a deterministic fashion through 
only one parameter that we refer to as the peak 

patterns have indeed been modified as in the 
aforementioned explanation. In practical applica-
tions, the signal patterns are calculated only once, 
whereas the noise patterns are recalculated each 
time the SNRp or type of analysis window is 
changed such that the new thresholds can be 
obtained. In the following section, we show the 
behavior of this model with respect to the measured 
NDDmin and NDDmax for different SNRp and various 
analysis window types.

Experimental Results

Next, we check the validity of the proposed adap-
tive threshold-selection algorithm. For different 

Figure 4. Resulting enve-
lopes after the superposi-
tion of the signal patterns 
to the corresponding noise 
patterns for SNRp = 10 dB, 
using a Hanning window.
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signal / noise ratio. By means of this control param-
eter, the descriptor limits of the classification 
algorithm can be adapted intuitively to increase or 
decrease the tolerance of the classifier with respect 
to noise level and modulation. The approximation 
accuracy given through the correlation coefficient is 
shown to be large for different types of analysis 
windows.

At the present state, the new threshold-selection 
method provides a control precision that can be 
considered sufficient for interactive control of a 
classification algorithm. Further investigation will 
be concerned with enhancing the threshold models 
to reduce approximation errors and improve preci-
sion. Also, we expect to improve the quality of the 
final decision in the peak-classification process by 
investigating different classification strategies and 
classifiers.
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