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ABSTRACT

Accurate decoding and most notably mode-matching has al-
ways been a matter of concern within the Ambisonics commu-
nity; it can be further expected to play a major role in future
discussion and research. Specifically, ambisonic decoding by
mode-matching attempts to perfectly reconstruct incident sound
fields using a surrounding spherical arrangement of loudspeak-
ers. This reproduction is valid locally within a bounded central
area, thesweet-area. Surprisingly, many (experienced) listeners
have reported good reproduction quality and fair localization ac-
curacy of real-world Ambisonics systems even outside this sweet
area. Hence in practice, mode-matching decoding performs bet-
ter than expected from theory, but it frequently poses numerical
problems for incomplete or non-uniform spherical loudspeaker
arrangements. To cope with these issues, this article presents,
discusses, and compares several alternative Ambisonics decod-
ing strategies with and without mode-matching in terms of sim-
ple quality criteria.

1. INTRODUCTION

Surround sound reproduction can be most accurately achieved
by covering the entire angular domain around the listening area
with as many loudspeakers as possible. This "very-high-order"
Ambisonics approach theoretically provides perfect holophony
in a dedicated central area of the reproduction room, the sweet-
spot. This area is often referred to as sweet-area to express its
spatial extent.

Real-world systems are often compromised by practical lim-
itations, such as non-ideal loudspeaker positions and arrays cov-
ering only parts of a full sphere, limited number of independently
driven loudspeaker channels, numerical instabilities of the de-
coder, and the acoustics of the reproduction room.

Referring to listening experiments and user experiences re-
ported in literature, Ambisonics seems to work reasonably well
even with non-ideal loudspeaker arrangements and with mod-
erate reproduction orders. The sound reproduction quality of
Ambisonics outside the sweet-area is usually not perceived as
distracting or annoying. Some experiments show that the num-
ber of loudspeakers should not exceed by far those required
by the reproduction order; too many loudspeakers result in au-
dible artifacts due to phase distortions around the sweet area,
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cf. [1, 2, 3, 4, 5]. In [1], loudspeaker signals have been time-
aligned with reference to the center of the reproduction sphere.
Listeners reported disturbing phasing effects and close-to-head
localization of virtual sound-sources. Another experiment [6]
shows that room reverberation can mask audible phase distor-
tions.

Incomplete spherical loudspeaker arrangements further
complicate the use of mode-matching for Ambisonics decoding,
e.g.distance coding is no longer feasible and spherical harmon-
ics become linearly dependent (numerically unstable).

This article discusses various decoding strategies for hemi-
spherical loudspeaker arrays, as a particular case study for arrays
that only cover parts of the sphere.

As a starting point, the holophonic mode-matching approach
for a hemispherical loudspeaker setup is discussed in detail.
Further decoder variants are proposed that explicitly avoid
exact matching of the finite-order hemispherical modes. These
variants include: order-weighting using an adapted Kaiser-
window, regularized mode-matching decoders, Musil decoder,
and a weighted direct-sampling decoder. Before introducing
and evaluating the different decoders the mathematical/physical
background is discussed.

Section twoexplains the theory of holophonic Ambisonics
derived from the wave-equation and a continuous spherical dis-
tribution of point sources, cp. [7]. It furthermore explains how
to obtain orthonormal band-limited modes of a partial-sphere or
a hemisphere by regularization of the Gram-matrix of the spher-
ical harmonics, cp. [8].

The third section describes mode-matching (ormodal
source-strength matching, cp. [7]), which reconstructs am-
bisonic signals on the whole sphere,i.e. on uniform spherical
arrangements of discrete loudspeakers.

Section four summarizes practical findings and issues with
this kind of sound-field reproduction.

In section five, we address practical issues by propos-
ing possible improvements of Ambisonics decoding including
spherical smoothing functions.

To evaluate and compare the different decoders,section
six defines objective quality measures that cover three indepen-
dent properties of Ambisonics: mode-matching quality, constant
power, and spatial resolution.

Eventually,section sevenpresentsfive different decoding
methods and techniques applicable tohemispherical layouts of
loudspeakers. Most of them are based on the theory and im-
provements presented in sections 2, 3, and 5.

Our contribution concludes with a brief report and case
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study insection eight, applying the measures introduced in sec-
tion 4; the results of preliminary listening sessions with a 24
channel hemispherical loudspeaker array are used to briefly dis-
cuss audible artifacts of different decoders.

2. CONTINUOUS AMBISONICS THEORY

Ambisonics can be regarded as discretization of a spheri-
cal distribution of sources at a given radiusrL driven by
the angular amplitude distributionf (θ), cf. [9]. In the fol-
lowing, the Cartesian direction vector is defined asθ =
(cos(ϕ) sin(ϑ), sin(ϕ) sin(ϑ), cos(ϑ))T and depends on the az-
imuth and zenith angle,ϕ andϑ respectively. The Ambisonics
approach can be derived from the nonhomogeneous Helmholtz-
equation with the angular excitationf(θ)

(
∆+ k2) p = −f (θ)

δ(r − rL)

r2
. (1)

As discussed in [7, 10], the entire sound field inside a source-free
volume can be reproduced by controllingf(θ) on the boundary
surface. This is also referred to asholophony.

The modal solutions of this equation for the sound pressure
are given as

p =

∞∑

n=0

n∑

m=−n

−ik jn(kr)hn(krL) Y
m
n (θ) φnm , (2)

whereinjn(kr) andhn(kr) are the spherical Bessel and Han-
kel functions, respectively,k is the wave-number, andY m

n (θ) a
spherical harmonic, see Fig. 1.φnm are the coefficients of the
spherical harmonics expansion

f(θ) =
∞∑

n=0

n∑

m=−n

Y m
n (θ) φnm , (3)

The coefficientsφnm are the discrete ambisonic signals in the
frequency-domainφnm = φnm(ω) = DT FT {φnm(t)}.
Eq. (2) describes the expansion of the wave field for decoding
ambisonic signals as discussed the later sections.

2.1. Vector notation

It is common practice to combine the coefficientsφnm and base-
functionsY m

n (θ) into vectors

φ = vec {φnm}m=−n...n

n=0...∞ ,

andy(θ) = vec {Ynm(θ)}m=−n...n

n=0...∞ .

Eq. (3) can be written in vector notation

f(θ) = y
T(θ) φ . (4)

Multiplying Eq. (4) byy(θ) and integration over a spherical sur-
faceS2 yields the transform off(θ) into spherical harmonics

∫

S2

f(θ)y(θ) dθ =

∫

S2

y(θ) yT(θ) dθ

︸ ︷︷ ︸

:=G

φ . (5)

The matrixG denotes the Gram-matrix ofy(θ). Integrating all
pairs of spherical harmonics over the unit sphereS2 = S

2 yields

Figure 1: Balloon plots of real-valued spherical harmonics
Y m
n (θ) of ordersn ≤ N = 5 that show|Y m

n (θ)| as radius and
sign{Y m

n (θ)} as color. The labels of the spherical harmonics
correspond ton2 + n+m+ 1.

the matrixG = I, i.e. they are orthonormal. The transform
reduces to

φ =

∫

S2

f(θ)y(θ) dθ. (6)

In the following, a simplified notation is used for better readabil-
ity

diag{vec{hn(kr)}
m=−n...n
n=0...∞ } = diag{hn(kr)} (7)

so that Eq. (2) reads as

p = −ik yT(θ) diag{jn(kr)hn(krL)} φ. (8)

2.2. Encoding of point sources into Ambisonics

Point sources are used as a model of virtual sound sources and
therefore represent (idealized) loudspeakers on the sphere; this
corresponds to the discretization as mentioned above. A point
source at the position(θs, rL) is mathematically described by
an angular Dirac-delta function, which is non-zero atθs

fs(θ) = δ(θT
s θ − 1) . (9)

Inserting the above equation into Eq. (6), the spherical harmon-
ics coefficient vectorφs of a point source located atθs yields

φs =

∫

S2

δ(θT
s θ − 1)y(θ) dθ = y(θs) . (10)

2.3. Holophony of point-sources with distance coding

Ambisonics creates a perfect holophonic image of virtual point-
sources at arbitrary positionsrs andθs when distance coding is
taken into account [11, 12]. The target modal source-strength
distribution is inserted into Eq. (8) as

φs = diag

{
hn(krs)

hn(krL)

}

y(θs). (11)

Obviously, in contrast to Eq. (10), the distance encoding of point
sources is frequency-dependent.
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Figure 2: 21 orthogonal base-functions of limited ordern ≤ 5
on the hemisphere. These functions have been found according
to [8], using an angleϑmax = 104◦ and a regularization thresh-
old of 1/1.4 from the largest eigenvalue.

2.4. Continuous Ambisonics on a bounded spherical domain

The existence of the spherical harmonics transform according to
Eq. (5)

φ = G
−1

∫

S2

f(θ)y(θ) dθ (12)

is mandatory for encoding and decoding of Ambisonics but de-
pends on the invertibility of the Gram-matrixG. This inversion
is often infeasible for an Ambisonics-layout on a partial-sphere
S2 ⊂ S

2.
As proposed in [8], inversion of the ill-conditioned Gram-

matrix can be done in two steps. First, it is decomposed by eigen-
decompositionG = V diag{λ}V T into pairs of eingenvectors
{vi ∈ V } and eigenvalues{λi ∈ λ}. Taking only eigenvalues
above a certain threshold

λc ⊂ λ : λi > c ·max(λ) , (13)

achieves regularization, wherec < 1 denotes the regular-
ization parameter. The regularized expression is inverted by
V T

c diag{λc}
−1 Vc. The matrixVc contains the eigenvectors

associated to the remaining eigenvalues.
In order to provide a better understanding, [8] outlines that

the usage of a new set of base-functions corresponds to regular-
ization

ỹ(θ) = R y(θ) (14)

with R = diag{λc}
− 1

2 V
T
c , (15)

which is an orthonormal basis onS2 as G̃ =
∫

S2 ỹ(θ) ỹ
T(θ) dθ = I.

The functions plotted in Fig. 2 have been found for the hemi-
sphere; QR matrix triangulation was applied to decompose the
matrixR, as outlined in [8, 13], enabling to group the functions
according to their similarities to spherical harmonics.

2.4.1. Encoding into new base-functions

For transcoding the spherical harmonics coefficientsφ to the
new base-functions, the orthogonality of the new functions can
be exploited. Expanding given spherical harmonic coefficients

to f(θ) = yT(θ)φ and integrating them with̃y(θ) over S2

yields

φ̃ =

∫

S2

Ry(θ) yT(θ)φ dθ

= RGφ = (R†)T φ, (16)

with R† denoting the right inverse ofR, i.e. Vc diag{λc}
1
2 .

2.4.2. Notes on distance coding on the hemisphere

It is reasonable that distance coding only works for loudspeaker
arrangements on the whole sphere; it could not be applied to
hemispherical setups. A horizontal loudspeaker array,i.e. a
ring of loudspeakers, can be considered as limit case of a partial
sphere. Distance coding is accessible to such arrays by reformu-
lation of the problem in 2D and compensation of real-world 3D
sources [14]. Nevertheless, distance coding for the hemisphere
is not further regarded within this article.

3. AMBISONICS DECODING ON THE SPHERE:
HOLOPHONY WITH LOUDSPEAKERS

As stated above, to obtain holophony one has to control the angu-
lar amplitude distributionf(θ) of a continuous spherical source
arrangement. Real-world Ambisonics playback facilities consist
of a spherical arrangement of loudspeakers at discrete locations
{θl}l=1...L, which are controlled by their respective gainsgl.
Assuming that the loudspeakers are point sources, cf. Eq. (9),
the angular amplitude-distribution of the playback facility reads
as

f̂(θ) =
L∑

l=1

gl δ
(

θ
T
l θ − 1

)

, (17)

or equivalently in the spherical harmonics/Ambisonics domain

φ̂ =
L∑

l=1

gl y(θl) .

This linear combination of vectors is usually written in matrix-
vector notation

φ̂ = Y g, (18)

with g = [g1, . . . gL]
T

and Y = [y (θ1) , . . . ,y (θL)] .

The weight-vectorg is unknown and will be derived in the fol-
lowing paragraphs.

3.1. Mode-matching

To approximate the sound field of any continuous virtual source
distributionfs(θ) using Ambisonics with a loudspeaker distri-
bution f̂(θ), one could simply match the modal source-strength

coefficientsφs
!
= φ̂.

However, it is physically impossible to create an equivalent
image of a point-sources located atθs without a loudspeaker at
exactly the same angular position:

δ(θT
s θ − 1) 6=

L∑

l=1

gl δ(θ
T
l θ − 1) ∀θs /∈ {θl} . (19)
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In this sense the matching conditionsφs
!
= φ̂ are not applica-

ble. In practice, a spatial band limitation,i.e. a limited angular
resolution, is assumed. A band-limitation operatorBN is applied
in order to truncate the spherical harmonics expansion off(θ)
to n ≤ N

BN {f(θ)} := y
T
N(θ)φN , (20)

with φN = vec {φnm}m=−n...n

n=0...N ,

andyN(θ) = vec {Ynm(θ)}m=−n...n

n=0...N .

Hence, the expansion coefficients and spherical harmonics of fi-
nite order are indicated by the subscriptN.

This truncation "blurs" the given discrete directions and the
matching condition results in

BN

{
f̂(θ)

} !
= BN

{
fs(θ)

}
, (21)

⇒ φ̂N
!
= φs,N. (22)

With reference to Eqs. (10) and (18), the loudspeaker gainsg

must fulfill the following matrix equation

YN g
!
= φs,N, (23)

and thedecodingmatrix-equation that fulfills Eq. (23) writes as

g = Dφs,N , (24)

with D = Y
T
N G

−1
d ,

andGd = YNY
T
N .

D denotes the right inverse ofYN, so thatYND = I. The
numerical stability ofD depends on the inversion ofGd, the
Gram-matrix of the discrete systemYN.

In contrast to the above-mentioned band-limitation, physi-
cal loudspeakers correspond to band-unlimited source-strengths
φ̂. Despite holophony is achieved in the band-limitedn ≤ N
subspace, the uncontrolled higher-order components need to be
addressed as well.

4. PRACTICAL ISSUES WITH AMBISONICS

The holophonic Ambisonics approach relies on mode-matching,
but decoding is frequently a numerical challenge, especially for
incomplete or non-uniform loudspeaker layouts on the sphere [8,
10].

Successful decoding of Ambisonics provides full control
over the amplitude distribution at low orders. Nevertheless, it
does not control the spherical harmonics at high ordersn > N,
which results in angular aliasing in̂φ.

4.1. Spatial aliasing and the sweet-area

A description of the sound field created by mode-matching is
obtained by inserting the modal source-strengths of the loud-
speakers Eq. (18) into the solution of the wave-equation Eq. (8).
Decoders that fulfill Eq. (23) accurately reproduce the spherical
modes of and incident sound field forn ≤ N. The angular alias-
ing at higher ordersn > N creates artifacts (spatial aliasing) in
the sound field.

One should consider that low order spherical modes can only
describeparticular sound fields. At high orders the spherical
Bessel functionsjn(kr) vanish for small argumentskr. Hence,

the aliased and band-limited components perfectly reconstruct
the desired sound-field but only within the sweet area. The
frequency-dependent radius of this holophonic sweet-area can
be estimated byrmax/λ ≈ N/6, cp. [15, 16, 7].

Taking all the above-mentioned into account, it becomes
clear that forN < 20 the sweet-area is smaller than the diame-
ter of a listener’s head for the high frequencies within the range
of audibility. In practice, Ambisonics is generally used for mid
to large scale concert venues, covering more than 100 listeners.
Therefore, most – if not all – of the listeners are situated outside
the sweet-area.

The following section discusses spatial aliasing and methods
to reduce the perceivable artifacts.

4.2. Does the minimization of spatial aliasing result in better
sound localization?

Many psychoacoustic evaluations of Ambisonics systems can be
found in literature,e.g.for varying numbers of active loudspeak-
ers [17, 18, 5, 6, 19] or fixed loudspeaker setups but different re-
production orders [1]. Some of them indicate that if the number
of loudspeakers is higher than the one required by the reproduc-
tion order, audible artifacts occur in the vicinity of the central
listening area. This further results in

• the impression of close-to-head sources and audible phasing
artifacts (Frank [1], Malham [2])

• comb-filter effects near the sweet-area (Nettingsmeier [3]),
and

• spectral impairment (Solvang [5]), as well as spectral un-
balance (Daniel [4])

Outside the sweet-area, the sound field cannot be reproduced
without artifacts. Considering the above-mentioned, the authors
suggest that outside the sweet-area ambisonic synthesis sounds
better with spatial aliasing than without; we propose the expres-
sionfriendly aliasing.

4.3. Must it be clean holophony?

Panning, i.e. suitably weighted playback of a signals(t) on
a loudspeaker setupx(t) = g s(t) can produce the impres-
sion of one single sound source. The perceived location of
this phantom source can be adjusted by the weightsg. Phan-
tom sources appearing between pairs (stereophony, surround)
and triplets of loudspeakers (VBAP) are well-described in liter-
ature [20, 21, 22]. It might be convenient to violate the require-
ments of holophonic wave-field reconstruction with Ambisonics
in order to obtain a panning law that enforces stable phantom
sources.

Santala [6] states that room reverberation is able to mask the
phasing effect. Spatial aliasing is further reported to be capa-
ble of masking the side-effects of ideal order truncation, which
normally occur at the border of the sweet-area.

Frank [1] has shown for the IEM-CUBE that digital time-
alignment of loudspeaker signals deteriorates the perceived qual-
ity of the sound reproduction for low order decoding near the
sweet-spot. In-phase decoding further decreases the effective or-
der [4] and performs inferior to max-rE or basic decoding using
time-aligned signals.

Compressive sampling[23] is a non-mode-matching opti-
mization technique for computing the decoder for given loud-
speaker setups. It makes use of the L1-norm optimization, which
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yields driving signals for the smallest possible set of active loud-
speakers. Nevertheless, it seems to be a promising technique
delivering good perceptual results.

For simplification, the influence of room acoustic conditions
and loudspeaker radiation patterns are usually neglected in most
practical implementations; most recently this has been studied
for WFS systems [24] and Ambisonics [25].

Ambisonics for binaural sound reproduction over head-
phones (Daniel [4], Noisterniget al. [26], Kan [27], etc.) al-
lows to perfectly center the listener’s head. Therefore, it pro-
vides a more accurate implementation of holophony than most
loudspeaker setups.

3D spatialization with a low number of loudspeakers and
a moderate acoustical treatment of the room raises the ques-
tion: Must it be clean holophony, or does the interpretation as
a panning-law serve our needs?In [28, 29, 30] Ambisonics is
regarded as a panning function; this approach can be further gen-
eralized by applying weighting functions for spherical convolu-
tion, which is shown in the following section.

4.4. Erroneous localization near the loudspeakers

A virtual point-source in Ambisonics corresponds to an ideally
truncated spherical Dirac-delta distribution. For circular hori-
zontal Ambisonics systems this function corresponds to a peri-
odic sinc-function, and for spherical Ambisonics systems it cor-
responds to a rotationally symmetric, sinc-like function. This
spatially/angularly band-limited distribution results in distract-
ing side lobes, which often evoke localization errors and front-
back confusion for the listeners outside the sweet-area, see also
Fig. 3a.

To diminish these distracting side lobes angular smooth-
ing functions have been applied to higher-order Ambisonics [4],
cp. Fig. 3b. In the spherical-harmonics domain, angular smooth-
ing is accomplished by attenuating the higher order components,
i.e. spherical convolution[31].

A source at the north poleθs = (0, 0, 1)T has a normalized,
rotationally symmetric, angular amplitude-distribution

fs(ϑ) = (N + 1)−2
N∑

n=0

(2n+ 1)Pn(cos(ϑ)) (25)

that depends on the zenith angleϑ = 0 . . . π and the Legendre
polynomialsPn(cos(ϑ)). Applying the order-weightsan, this
distribution becomes

fs(ϑ) =

[
N∑

n′=0

an(2n+ 1)

]−1 N∑

n=0

an (2n+ 1)Pn(cos(ϑ)).

(26)

Known types of weighting functionsan in Ambisonics lit-
erature are

• In-phase: full side lobe suppression, biggest main lobe,

• max-rE: best angular power concentration, and

• max-rV, narrowest source in the amplitude domain,

and frequency-dependent combinations thereof. These smooth-
ing functions can be found,e.g., in Jérôme Daniel’s thesis [4].
However, these smoothing-functions do not provide a freely ad-
justable the side-lobe rejection.

(a) unsmoothed Delta-function(b) smoothed Delta-function

Figure 3: Angular amplitude-distribution for a virtual point-
source of the orderN = 5 atθs = (0, 0, 1)T plotted as balloon
diagram|fs(ϑ)|, without and with smoothing.
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Figure 4: Conversion of a Kaiser-window to the spherical har-
monics (Legendre) domain is necessary to obtain the corre-
sponding circular and spherical angular functions.

5. PROPOSED IMPROVEMENTS

5.1. Spherical Kaiser smoothing-function

The Kaiser-window provides a parametrization of the side-lobe
attenuation. In the following, a Kaiser-window with the param-
eterβ = 2.75 is employed, resulting in a side-lobe attenuation
of 23dB. Given the original window coefficients in a vectorã, a
matrixW achieves conversion from the circular to the spherical
harmonics domain [32],

a = W ã . (27)

First-order Ambisonics decoders often apply frequency-
dependent smoothing functions. Referring to literature [1, 18],
frequency-dependent smoothing have not been found to improve
higher-order Ambisonics (HOA) decoding.

6. QUALITY MEASURES FOR AMBISONICS

The evaluation of Ambisonics decoders requires objective qual-
ity measures, which have been chosen to be optimal for a

• constant amplitude in the direction of the virtual source
(band-limited case, condition met by mode-matching),

• constant decoded overall-power for any virtual source di-
rection,
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Figure 5: Quality measures for mode-matching on the entire
sphere.

• constant concentration of the decoded power towards loud-
speakers near the virtual source.

All three measures express the stability of loudness for a virtual
source with varying direction. The first quality measure esti-
mates the loudness inside, the second one the loudness outside
the sweet-area, and the third measure roughly describes the sta-
bility of the discrete angular loudspeaker driving signals around
the virtual source direction.

6.1. Peak-amplitude of the virtual source (within the sweet-
area)

An ideal mode-matching decoder produces the identityYN D =
I, cp. Eq. (24). Therefore, decoding/re-encoding of an Am-
bisonics setup should ideally reproduce the analytical spherical-
harmonic patterns when regarding a band-limited subspace,i.e.
n ≤ N. Within this subspace and considering the order-weights
a, cf. Eq. (27), a virtual source at the directionθs should be
represented by the ideal angular amplitude distributionf(θ) =
yT
N(θ) diag{a}yN(θs), which has a constant peak-amplitude

q
(ideal)
1 =

N∑

n=0

2n+ 1

4π
an. (28)

In practice, accurate mode-matching will often fail so that the
peak-amplitude differs from the one given in Eq. (28). There-
fore, the ratio between the actual peak-value for every virtual
source angleθs and its ideal valueq(ideal)1 is considered as a
quality criterion. Given the decoderD and the order weightsa,
this first measure writes as

q1(θs) = y
T
N(θs) YN D diag{a}yN(θs)/q

(ideal)
1 . (29)

It varies locally depending on the decoders found by regular-
ization, approximation, or for decoders without mode-matching.
Orthogonal angular loudspeaker layouts are a special case:t-
design, or quadratureusing the decoderD = diag{w}Y T

N

always perform optimally [10].

6.2. Overall power of decoded signals (outside the sweet-
area)

Decoding a virtual source usually does not – but ideally should
– yield a constant sum of squared loudspeaker signals, indepen-
dent of the source positionθs

q
(ideal)
2 =

N∑

n=0

2n+ 1

4π
a2
n. (30)

For mode-matching decoders, the actual sum tends to deviate
from the ideal values. Given the decoder matrixD and the order
weightsa, the second quality measure becomes

q2(θs) = ‖D diag{a} yN(θs)‖
2 /q

(ideal)
2 . (31)

Orthogonal angular layouts of loudspeakers are again an ideal
exception, cf. t-design, or quadrature with decoderD =

diag{w}
1
2 Y T

N , [10].

6.3. Angular power-distribution of decoded signal

In order to prevent largely erroneous localization, the power of
the discrete signals should concentrate within the angular prox-
imity to a virtual source. Introducing the angleϑp that discrimi-
nates between proximal and distant angles, we obtain a constant
ratio in the ideal analytic case

q
(ideal)
3 =

∫ 1
cos(ϑp)|

∑N
n=0 an (2n+1)Pn(µ)|2 dµ

∫ cos(ϑp)

−1 |
∑N

n=0 an (2n+1)Pn(µ)|2 dµ
.

(32)

For the given angular function in Fig. 4 andϑp = 40◦ we get
q
(ideal)
3 ≈ −17dB.

Given the decoder matrixD and the order weightsa, the
ratio between the power of the loudspeaker signals in angular
proximity to the virtual source and of those far from it yields

q3(θs) =
‖diag{θT

s ΘL≥cos(ϑp)}D diag{a} yN(θs)‖
2

‖diag{θT
s ΘL<cos(ϑp)}D diag{a} yN(θs)‖

2
, (33)

with ΘL = (θ1, . . . ,θL); the inner productθT
s ΘL expresses

the cosine of the angular distance between the loudspeakers and
the virtual source.

The angleϑp has been chosen to enclose 3-5 loudspeakers
around any virtual source location.

6.4. Example

Fig. 5 shows three different quality measures in dB for a mode-
matching decoder on the entire sphere, cf. Eq. (24). The ampli-
tude levels are constant but the other measures do not perform
optimally.

7. HEMISPHERICAL AMBISONICS DECODING

Why should decoding to a hemispherical loudspeaker arrange-
ments be challenging, e.g. regarding the IEM-CUBE, a small
concert room depicted in Fig. 6?The following sections discuss
the difficulties of decoding by mode-matching and present var-
ious approaches to improve the results for hemispherical loud-
speaker arrangements. Moreover, a non-mode-matching ap-
proach is given.

7.1. Mode-matching based on hemispherical base-functions

As described in [8, 13], a new orthogonal set of functions can
be calculated for the hemisphere by truncated eigendecompo-
sition. For the spherical domain restricted to zenith angles
ϑ = 0 . . . ϑmax < π with ϑmax = 104◦ we obtain orthonor-
mal functions as depicted in Fig. 2.
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Figure 6: The IEM-CUBE is a 24 channel hemispherical Am-
bisonics system.

Encoding the loudspeakers with this new subset of band-
limited spherical harmonics according to Eq. (16) yield

ỸN = (R†)T YN. (34)

The matching-condition using these new base-functions is simi-
lar to Eq. (23)

ỸN g
!
= φ̃s,N

and yields

g = Ỹ
T
N G̃

−1
d φ̃s,N, (35)

with G̃d = ỸN Ỹ
T
N .

The resulting decoding equation with ordinary spherical har-
monics encoding from Eq. (16) is

g = D φs,N,

with D = Ỹ
T
N G̃

−1
d (R†)T. (36)

7.2. Mode-matching based on even spherical harmonics

Another variant of hemispherical decoding [8] excludes the odd
spherical harmonics with respect toz; Eq. (23) becomes invert-
ible. The matrixR contains ones and zeros in order to extract
the(N+1)(N+2)/2 even-symmetric harmonics from the entire
(N + 1)2 set of base functions, see Fig. 7. WithR = (R†)T,
the encoded loudspeaker positions become

ỸN = RYN

resulting in the Gram-matrix̃Gd = ỸNỸ
T
N of the discrete sys-

temYN. For the hemisphere, this achieves̃G = RTGR = I

by discarding the obvious linear dependencies.
With ordinary spherical harmonics encoding, the above can

be re-written according to [8], as a special case of Eq. (16)

g = D φs,N,

with D = Ỹ
T
N G̃

−1
d R.

Figure 7: Selection of the 21 even-symmetric spherical harmon-
icsn ≤ 5 with respect to thez-axis.

Figure 8: Base-functions that are orthonormal for the hemispher-
ical loudspeaker-layout of the IEM-CUBE.

7.3. Mode-matching regularizing the discrete Gram-matrix

Another feasible way of decoding to a hemispherical loud-
speaker layout is regularization of Eq. (24), cp. [28, 33, 30].

As in the analytic case, Sec. 2.4, regularization results in
new base-functions that are orthonormal for a given loudspeaker
layout. This is achieved by truncated eigendecomposition of the
Gram-matrix for the given loudspeaker systemYN

Gd = YNY
T
N = V diag{λ}V T,

R = diag{λc}
− 1

2 V
T
c ,

ỸN = (R†)T YN.

The new Gram-matrix is orthonormal,̃Gd = ỸNỸ
T
N = I

and therefore simplifies the right-inverse as given above. With
Eq. (16), the corresponding mode-matching decoder becomes

g = D φs,N,

with D = Ỹ
T
N (R†)T.

Multipole-matched rendering [33] is similar but additionally
takes the regularization of frequency-dependent acoustic near-
fields into account.
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7.4. Mode-matching based on virtual and phantom loud-
speakers – the Musil decoder-design

Alternatively to designing new restricted-domain orthonormal or
regularized base-functions in the modal domain, modification
can be done in the angular domain as well. For this purpose,
a given hemispherical layout is completed to a full sphere by the
virtual loudspeakersl > L, also referred to as phantom loud-
speakers. The decoder is computed for this full set of loudspeak-
ers

YN =






Y 0
0 (θ1) . . . Y 0

0 (θL)
...

. . .
...

Y N
N (θ1) . . . Y N

N (θL)

Y 0
0 (θL+1) . . .

...
. . .

Y N
N (θL+1) . . .




 .

(37)

The driving signals for the virtual loudspeakers can be (a) omit-
ted, or (b) mapped to their nearest neighboring loudspeakers, in
order to preserve the power of their signals. The matching con-
dition uses gains for both physical and phantom loudspeakers

YN











g1
...
gL

gL+1

...











!
= φs,N. (38)

All the gains are calculated by right-inversionY T
N G−1

d and take
into account linear combinations to build phantom loudspeakers

g = D φs,N, (39)

with D =











1 0 . . . 0 gL+1,1 . . .

0 1 0
... gL+1,2 . . .

...
. . .

. . .
...

...
. . .

0 . . .
. . . 1 gL+1,L . . .











Y
T
N G

−1
d .

(40)

with Gd = YN Y
T
N .

This decoder is currently implemented at the IEM-CUBE, see
Fig. 9. Virtual loudspeakers are placed in weakly sampled re-
gions,i.e. the “missing speaker” at the north-pole, and the south-
ern hemisphere. Anywhere virtual loudspeakers are located near
the real loudspeakers, their signal is mapped to the latter by suit-
able weighting functions (projection). This decoder-design ap-
proach allows to obtain perceptually good results but requires a
lot of experience.

7.5. Direct sampling of the spherical harmonics using
Voronoi weights

For fully spherical layouts, the Gram-matrix ofYN can be im-
proved by multiplying suitable weightswl to theL loudspeaker
nodes. This changes the Gram-matrixG̃d to:

G̃d = YN diag{w}Y T
N . (41)

In general, weightsw that diagonalizẽGd might not exist. How-
ever, if the given loudspeaker nodes and weightswl form a
quadrature rule, the Gram-matrix equals identitỹGd = I; this
only holds for special sets of nodes and weights, cf. [7].

Figure 9: Hemispherical Ambisonics arrangement with the de-
coding approach of Thomas Musil, using virtual phantom loud-
speakers.

Figure 10: IEM-CUBE loudspeaker layout with Voronoi cells
determining the coverage area of each loudspeaker.

Nevertheless,̃Gd ≈ I can be approximated by weighting
the lth loudspeaker signal with the discrete surfacewl it covers.
The Voronoi-algorithm STRIPACK [34, 35] for the sphere cal-
culates these weights for a given arrangements of loudspeakers.
For distributions on a full sphere, the weights obtained by this
algorithm deliver results of reasonable playback quality with the
decoder

D = diag{w}Y T
N . (42)

This method provides a relatively easy way to determine the de-
coder coefficients for incomplete spherical layouts. However,
cells without enough neighbors have to be manually limited,e.g.
for hemispherical layout the loudspeakers on the equator, see
Fig. 10.

8. CASE STUDY

Seven decoder examples have been evaluated at the IEM-CUBE
using the loudspeaker-locations provided [36]. For all the ex-
amples, spherical Kaiser-smoothing has been applied with the
paramtereβ = 2.75. In particular, these decoders have been
studied:

• even symmetrical mode-matching,

• hemispherical-base mode-matching, regularization parame-
ter c = 1.4, andϑmax = 104◦,



Proc. of the 2nd International Symposium on Ambisonics and Spherical Acoustics May 6-7, 2010, Paris, France

• regularized Gram-matrix decoder, regularization parameter
c = 2.7,

• Voronoi-weighted,

• Musil-decoder (phantom loudspeakers),

The objective quality measures evaluated for the test cases are
shown in Fig. 11. The figures illustrate the upper hemisphere,
using the azimuthϕ as polar angle and the zenithθ as radial
coordinate. Black dots indicate the loudspeaker positions.

Obviously the mode-matching decoders in Figs. 11a, 11b
perform quite well for theq1 criterion, except for the “hole” at
the north-pole.

8.1. Perceptual evaluation – informal listening sessions

The above-mentioned objective quality measures might provoke
misinterpretations regarding the perceptual quality. This section
briefly discusses informal listening sessions in the IEM-CUBE.
One should note that this must not be understood as evidence as
the presented impressions are not a result of formally objective
psychoacoustic listening experiments.

Informal listening sessions including the authors and
Thomas Musil indicate that theq2 criterion is perceptually much
more important thanq1. It well represents audible loudness vari-
ations,i.e. the decoders in Figs. 11a and 11b were perceived to
have a bad loudness balance, especially because of the loudness-
boost of virtual sources positioned near the north-pole.

The bad performance of theq3 criterion for mode-matching
decoders could not be verified in the informal listening sessions.

The subjects of informal listening sessions attributed a good
performance to the decoders depicted in Figs. 11c, 11d, 11e. The
decoder shown in Fig. 11c was in favor by all of the subjects,
even if a loudness loss was noticeable for virtual sources close
to the equator. Decoders in Figs. 11c, 11d, 11e have been subjec-
tively rated on the second, third, and fourth place, respectively.

9. CONCLUSIONS

This article discusses the theoretical background of Ambisonics
on the sphere, the hemisphere, and in more general the mode-
matching approach. Three objective quality criteria were pre-
sented that are applicable for evaluation and comparison of dif-
ferent decoders. We have proposed an improvement of Am-
bisonics decoding by introducing the spherical Kaiser smooth-
ing filter. Most notably, we have described five different meth-
ods/techniques for Ambisonics decoding to a hemispherical ar-
rangement of loudspeakers and evaluated their performance ob-
jectively, also providing some informal information about their
subjective performance. The methods and techniques presented
show different ways to solve the decoding problem on the hemi-
sphere or other partial spheres.

Many further aspects of Ambisonics decoding remain sub-
ject to future research, as for instance, the geometric distortion
and/or optimization of loudspeaker positions on the sphere. In-
vestigation of additional constraints for improving the loudness
balance of decoders seems promising as well.

Moreover, hybrid approaches mapping the supplementary
virtual loudspeakers (Musil decoder) by applying VBAP should
be regarded more closely. Extensive listening test are required
to evaluate different decoding strategies and to improve the ob-
jective models of subjective qualities.
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