Ircam-Centre Pompidou

Recherche

  • Recherche simple
  • Recherche avancée

    Panier électronique

    Votre panier ne contient aucune notice

    Connexion à la base

  • Identification
    (Identifiez-vous pour accéder aux fonctions de mise à jour. Utilisez votre login-password de courrier électronique)

    Entrepôt OAI-PMH

  • Soumettre une requête

    Consulter la notice détailléeConsulter la notice détaillée
    Version complète en ligneVersion complète en ligne
    Version complète en ligne accessible uniquement depuis l'IrcamVersion complète en ligne accessible uniquement depuis l'Ircam
    Ajouter la notice au panierAjouter la notice au panier
    Retirer la notice du panierRetirer la notice du panier

  • English version
    (full translation not yet available)
  • Liste complète des articles

  • Consultation des notices


    Vue détaillée Vue Refer Vue Labintel Vue BibTeX  

    Catégorie de document Contribution à un colloque ou à un congrès
    Titre Nonlinear propagation with frequency-independent damping: input-output simulation of entropic solutions
    Auteur principal Thomas Hélie
    Co-auteur Christophe Vergez
    Colloque / congrès ISMA. Sydney : Août 2010
    Comité de lecture Oui
    Année 2010
    Statut éditorial Publié
    Résumé

    We present an exact method to solve a one-dimensional nonlinear transport equation in a dissipative non homogeneous media when the damping is frequency-independent. This work was motivated by the case of brass musical instruments whose functioning at high sound levels implies nonlinear propagation. Though in that latter case, the medium is homogeneous, our approach is more general. Usually, the wave propagation in musical wind instruments is justifiably considered to be linear. A well-known counter-example is the case of brass instruments at high sound level. In this case, the nonlinear effects become dominant. They account for the graduated waveshape distortion due to their cumulative nature which eventually leads to the arrival of shock-waves. For the class of propagation models under study in this paper, we derive an exact method which allows to recover an input-output formalism and an efficient algorithm in the time domain. The method is based on three key points: (1) a change of function which turns the original problem into a conservative problem of hyperbolic type, (2) the adaptation of the standard "characteristics method" from which all possible solutions can be deduced, and (3) the introduction of an easily computable criterion which naturally selects the "physically meaningful" solution (this latter point provides a generalization of the "potential function" proposed by Hayes [Hayes,1969]. This approach operates for regular and continuous solutions as well as shocks and multiple shocks. Finally, a fast algorithm is deduced and proposed for real-time sound synthesis issues.

    Equipe Analyse et synthèse sonores
    Cote Helie10d
    Adresse de la version en ligne http://articles.ircam.fr/textes/Helie10d/index.pdf

    © Ircam - Centre Pompidou 2005.