Recherche
Recherche simple
Recherche avancée
Panier électronique
Votre panier ne contient aucune notice
Connexion à la base
Identification
(Identifiez-vous pour accéder aux fonctions de mise à jour. Utilisez votre login-password de courrier électronique)
Entrepôt OAI-PMH
Soumettre une requête
| Consulter la notice détaillée |
| Version complète en ligne |
| Version complète en ligne accessible uniquement depuis l'Ircam |
| Ajouter la notice au panier |
| Retirer la notice du panier |
English version
(full translation not yet available)
Liste complète des articles
|
Consultation des notices
Catégorie de document |
Article paru dans une revue |
Titre |
Adaptive Additive Modeling with Continuous Parameter Trajectories |
Auteur principal |
Axel Roebel |
Paru dans |
IEEE Transactions on Speech and Audio Processing, Juillet 2006, Vol. 14, n° 4 |
Comité de lecture |
Oui |
Collation |
p.1440-1453 |
Copyright |
IEEE |
Année |
2006 |
Statut éditorial |
Publié |
Résumé |
This article investigates into the estimation of time varying amplitude and phase trajectories of sinusoidal signal components. The new algorithm adaptively optimizes the parameters of a smoothly connected piecewise polynomial trajectory model. A mathematical analysis is presented that relates the user selected meta parameters of the trajectory model (polynomial order, segment size, and smoothness at the junctions) to the analysis properties of the adaptive algorithm. It reveals new insights into the relationships between the meta parameters and the resulting time/frequency resolution of the estimate. Moreover, it is shown that for efficient optimization the phase trajectory needs to be represented in a specific form. A new approach to address the bias/variance tradeoff of the polynomial phase trajectory model by means of regularization is presented and a complete adaptive analysis/synthesis system for sinusoidal sound components is proposed. The adaptive analysis system is investigated by means of simple tracking experiments to demonstrate the effect of the smoothness constraints and compare the results with a standard STFT base frequency estimation technique and known Cramer Rao bounds. The potential of the adaptive strategy for the modeling of sinusoidal transients is discussed and it is shown that it achieves similar transient quality as a previously proposed method, however, with considerably lower model error. Two examples for modeling real world signals are discussed. |
Mots-clés |
additive model / sinusoidal model / time varying parameter / adaptive model / spline. |
Equipe |
Analyse et synthèse sonores |
Cote |
Roebel06a |
Adresse de la version en ligne |
http://articles.ircam.fr/textes/Roebel06a/index.pdf |
|
|