Ircam-Centre Pompidou

Recherche

  • Recherche simple
  • Recherche avancée

    Panier électronique

    Votre panier ne contient aucune notice

    Connexion à la base

  • Identification
    (Identifiez-vous pour accéder aux fonctions de mise à jour. Utilisez votre login-password de courrier électronique)

    Entrepôt OAI-PMH

  • Soumettre une requête

    Consulter la notice détailléeConsulter la notice détaillée
    Version complète en ligneVersion complète en ligne
    Version complète en ligne accessible uniquement depuis l'IrcamVersion complète en ligne accessible uniquement depuis l'Ircam
    Ajouter la notice au panierAjouter la notice au panier
    Retirer la notice du panierRetirer la notice du panier

  • English version
    (full translation not yet available)
  • Liste complète des articles

  • Consultation des notices


    Vue détaillée Vue Refer Vue Labintel Vue BibTeX  

    %0 Conference Proceedings
    %A Cont, Arshia
    %A Dubnov, Shlomo
    %A Wessel, David L.
    %T Realtime Multiple-pitch and Multiple-instrument Recognition For Music Signals using Sparse Non-negative Constraints
    %D 2007
    %B Digital Audio Effects (DAFx)
    %C Bordeaux
    %P 85-92
    %F Cont07b
    %K Real-time
    %K Multiple f0
    %K Instrument classification
    %K Non-negative Constraints
    %K Sparsity
    %K Modulation Spectrum
    %X In this paper we introduce a simple and fast method for realtimerecognition of multiple-pitches produced by multiple musicalinstruments. Our proposed method is based on two important facts:one that timbral information of any instrument is pitch-dependantand two, that the modulation spectrum of the same pitch seems toresult into a persistent representation of the characteristics ofthe instrumental family, as discussed in the paper. Using thesebasic facts, we construct a learning algorithm to obtain pitchtemplates of all possible notes on various instruments and thendevise an online algorithm to decompose a realtime audio bufferusing the learned templates. The learning and decomposition proposedhere are inspired by non-negative matrix factorization methods butdiffer by introduction of an explicit sparsity control. Our testresults show significant recognition rate for a realtime system andon real music recordings. We discuss further improvements that canbe made over the proposed system.
    %1 6
    %2 3
    %U http://articles.ircam.fr/textes/Cont07b/

    © Ircam - Centre Pompidou 2005.