Ircam-Centre Pompidou

Recherche

  • Recherche simple
  • Recherche avancée

    Panier électronique

    Votre panier ne contient aucune notice

    Connexion à la base

  • Identification
    (Identifiez-vous pour accéder aux fonctions de mise à jour. Utilisez votre login-password de courrier électronique)

    Entrepôt OAI-PMH

  • Soumettre une requête

    Consulter la notice détailléeConsulter la notice détaillée
    Version complète en ligneVersion complète en ligne
    Version complète en ligne accessible uniquement depuis l'IrcamVersion complète en ligne accessible uniquement depuis l'Ircam
    Ajouter la notice au panierAjouter la notice au panier
    Retirer la notice du panierRetirer la notice du panier

  • English version
    (full translation not yet available)
  • Liste complète des articles

  • Consultation des notices


    Vue détaillée Vue Refer Vue Labintel Vue BibTeX  

    Catégorie de document Contribution à un colloque ou à un congrès
    Titre On damping models preserving the eigenfunctions of conservative systems: a port-Hamiltonian perspective
    Auteur principal Denis Matignon
    Co-auteur Thomas Hélie
    Colloque / congrès 4th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control. Bertinoro : Août 2012
    Comité de lecture Oui
    Volume 4
    Collation p.1-6
    Année 2012
    Statut éditorial Publié
    Résumé

    In this paper, a special class of damping model is introduced for second order dynamical systems. This class is built so as to leave the eigenfunctions invariant, while modifying the dynamics: for mechanical systems, well-known examples are the standard fluid and structural dampings. In the finite-dimensional case, the so-called Caughey series are a general extension of these standard damping models; the damping matrix can be expressed as a polynomial of a matrix, which depends on the mass and stiffness matrices. Damping is ensured whatever the eigenvalues of the conservative problem if and only if the polynomial is positive for positive scalar values. This can be recast in the port-Hamiltonian framework by introducing a port variable corresponding to internal energy dissipation (resistive element). Moreover, this formalism naturally allows to cope with systems including gyroscopic effects (gyrators). In the infinite-dimensional case, the previous polynomial class can be extended to rational functions and more general functions of operators (instead of matrices), once the appropriate functional framework has been defined. In this case, the resistive element is modelled by a given static operator, such as an elliptic PDE. These results are illustrated on several PDE examples: the Webster horn equation, the Bernoulli beam equation; the damping models under consideration are fluid, structural, rational and generalized fractional Laplacian or bi-Laplacian.

    Mots-clés Energy storage / Port-Hamiltonian systems / Eigenfunctions / Damping / Caughey series / Partial differential equations / Fractional Laplacian
    Equipe Analyse et synthèse sonores
    Cote Matignon12a
    Adresse de la version en ligne http://articles.ircam.fr/textes/Matignon12a/index.pdf

    © Ircam - Centre Pompidou 2005.